
1/4

September 12, 2014

What did Windows 3.1 do when you hit Ctrl+Alt+Del?
devblogs.microsoft.com/oldnewthing/20140912-00

Raymond Chen

This is the end of Ctrl + Alt + Del week, a week that sort of happened around me and I

had to catch up with.

The Windows 3.1 virtual machine manager had a clever solution for avoiding deadlocks:

There was only one synchronization object in the entire kernel. It was called “the critical

section”, with the definite article because there was only one. The nice thing about a system

where the only available synchronization object is a single critical section is that deadlocks

are impossible: The thread with the critical section will always be able to make progress

because the only thing that could cause it to stop would be blocking on a synchronization

object. But there is only one synchronization object (the critical section), and it already owns

that.

When you hit Ctrl + Alt + Del in Windows 3.1, a bunch of crazy stuff happened. All this

work was in a separate driver, known as the virtual reboot device. By convention, all drivers

in Windows 3.1 were called the virtual something device because their main job was to

virtualize some hardware or other functionality. That’s where the funny name VxD came

from. It was short for virtual x device.

First, the virtual reboot device driver checked which virtual machine had focus. If you were

using an MS-DOS program, then it told all the device drivers to clean up whatever they were

doing for that virtual machine, and then it terminated the virtual machine. This was the easy

case.

Otherwise, the focus was on a Windows application. Now things got messy.

When the 16-bit Windows kernel started up, it gave the virtual reboot device the addresses of

a few magic things. One of those magic things was a special byte that was set to 1 every time

the 16-bit Windows scheduler regained control. When you hit Ctrl + Alt + Del , the

virtual reboot device set the byte to 0, and it also registered a callback with the virtual

machine manager to say “Call me back once the critical section becomes available.” The

callback didn’t do anything aside from remember the fact that it was called at all. And then

the code waited for ¾ seconds. (Why ¾ seconds? I have no idea.)

https://devblogs.microsoft.com/oldnewthing/20140912-00/?p=44083

2/4

After ¾ seconds, the virtual reboot device looked to see what the state of the machine was.

If the “call me back once the critical section becomes available” callback was never called,

then the problem is that a device driver is stuck in the critical section. Maybe the device

driver put an Abort, Retry, Ignore message on the screen that the user needs to respond to.

The user saw this message:

 Procomm
This background non-Windows application is not responding.
* Press any key to activate the non-Windows application.

 * Press CTRL+ALT+DEL again to restart your computer. You will
 lose any unsaved information.

 Press any key to continue _

After the user presses a key, focus was placed on the virtual machine that holds the critical

section so the user can address the problem. A user who is still stuck can hit

Ctrl + Alt + Del again to restart the whole process, and this time, execution will go into

the “If you were using an MS-DOS program” paragraph, and the code will shut down the

stuck virtual machine.

If the critical section was not the problem, then the virtual reboot device checked if the 16-bit

kernel scheduler had set the byte to 1 in the meantime. If so, then it means that no

applications were hung, and you got the message

 Windows
Although you can use CTRL+ALT+DEL to quit an application that has stopped responding
to the system, there is no application in this state.
To quit an application, use the application’s quit or exit command, or choose the Close
command from the Control menu.

* Press any key to return to Windows.
 * Press CTRL+ALT+DEL again to restart your computer. You will

 lose any unsaved information in all applications.

 Press any key to continue _

(Anachronism alert: The System menu was called the Control menu back then.)

Otherwise, the special byte was still 0, which means that the 16-bit scheduler never got

control, which meant that a 16-bit Windows application was not releasing control back to the

kernel. The virtual reboot device then waited for the virtual machine to finish processing any

pending virtual interrupts. (This allowed any pending MS-DOS emulation or 16-bit MS-DOS

device drivers to finish up their work.) If things did not return to this sane state within 3¼

seconds, then you got this screen:

3/4

 Windows
The system is either busy or has become unstable. You can wait and see if the system
becomes available again and continue working or you can restart your computer.
* Press any key to return to Windows and wait.
* Press CTRL+ALT+DEL again to restart your computer. You will
 lose any unsaved information in all applications.

 Press any key to continue _

Otherwise, we are in the case where the system returned to a state where there are no active

virtual interrupts. The kernel single-stepped the processor if necessary until the instruction

pointer was no longer in the kernel, or until it had single-stepped for 5000 instructions and

the instruction pointer was not in the heap manager. (The heap manager was allowed to run

for more than 5000 instructions.)

At this point, you got the screen that Steve Ballmer wrote.

Contoso Deluxe Music Composer
 This Windows application has stopped responding to the system.
 * Press ESC to cancel and return to Windows.

 * Press ENTER to close this application that is not responding.
 You will lose any unsaved information in this application.

 * Press CTRL+ALT+DEL again to restart your computer. You will
 lose any unsaved information in all applications.

If you hit Enter , then the 16-bit kernel terminated the application by doing mov ax,

4c00h followed by int 21h , which was the system call that applications used to exit

normally. This time, the kernel is making the exit call on behalf of the stuck application.

Everything looks like the application simply decided to exit normally.

The stuck application exits, the kernel regains control, and hopefully, things return to

normal.

I should point out that I didn’t write any of this code. “It was like that when I got here.”

Bonus chatter: There were various configuration settings to tweak all of the above

behavior. For example, you could say that Ctrl + Alt + Del always restarted the

computer rather than terminating the current application. Or you could skip the check

whether the 16-bit kernel scheduler had set the byte to 1 so that you could use

Ctrl + Alt + Del to terminate an application even if it wasn’t hung.¹ There was also a

setting to restart the computer upon receipt of an NMI, the intention being that the signal

would be triggered either by a dedicated add-on switch or by poking a ball-point pen in just

the right spot. (This is safer than just pushing the reset button because the restart would

flush disk caches and shut down devices in an orderly manner.)

https://devblogs.microsoft.com/oldnewthing/20070130-00/?p=28223

4/4

¹ This setting was intended for developers to assist in debugging their programs because if

you went for this option, the program that got terminated is whichever one happened to have

control of the CPU at the time you hit Ctrl + Alt + Del . This was, in theory, random, but

in practice it often guessed right. That’s because the problem was usually that a program got

wedged into an infinite message loop, so most of the CPU was being run in the stuck

application anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

