
1/3

October 10, 2014

Some parts of an interface can change but others can't
devblogs.microsoft.com/oldnewthing/20141010-00

Raymond Chen

When I wrote about asking the compiler to answer calling convention questions, some people

were concerned about whether this was a reliable mechanism or whether it was relying on

something that can change in the future.

This is a special case of the question, “What parts of an interface can change, and what

can’t?” And it all boils down to compile-time versus run-time.

Assuming you are interested in binary compatibility (as opposed to merely source

compatibility), then a decision made at compile-time can never be changed because the

decision is already hard-coded into the application. For example, if you have a function that

takes a parameter that is an enumeration, say,

enum FOO_OPTIONS 
{ 
   FOO_HOP = 0, 
   FOO_SKIP = 1, 
   FOO_JUMP = 2, 
};

then the values of FOO_HOP , FOO_SKIP , and FOO_JUMP  are hard-coded into any program

that uses them. The compiler will generate code like this:

; foo(FOO_JUMP); 
   push 2 
   call foo 

Suppose you later change the header file to

enum FOO_OPTIONS 
{ 
   FOO_HOP = 2, 
   FOO_SKIP = 3, 
   FOO_JUMP = 4, 
};

https://devblogs.microsoft.com/oldnewthing/20141010-00/?p=43873
http://blogs.msdn.com/b/oldnewthing/archive/2013/02/20/10395379.aspx


2/3

Making a change in the new version of a header file has no effect on any existing programs

which were compiled with the old version of the header file. There is no way for the foo

function to tell whether the 2  it received as a parameter is a FOO_JUMP  from the old header

file or a FOO_HOP  from the new one.

Therefore, you cannot reuse values in any existing enumerations or #define ‘s because the

values are already compiled into existing programs. If you had given the value 2  different

meanings in different versions of the header file, you would have in principle no way of

knowing which header file the caller used. Of course, you can invent external cues to let you

figure it out; for example, there may be a separate set_foo_version  function that callers

use in order to specify whether they are using the old or new header file. Of course, that also

means that if there are multiple components that disagree on what version of foo  they

want, you have another problem.

Note that this is not the same as saying that the value of a symbol cannot change. We’ve seen

this happen in the past with the PSH_WIZARD 97 flag, but these sorts of redirections are rare in

practice.

Another thing that is hard-coded into an application is the calling convention. Once code is

generated by the compiler to call a function, that’s that. You can’t change the calling

convention without breaking existing code. That’s why you can ask the compiler, “How would

you call this function?” and trust the answer: If the compiler generates code to call the

function using technique X (register set-up, what gets pushed on the stack first, etc.), then

the function had better accept technique X in perpetuity. Of course, you need to be sure that

what you observe is in fact all there is. There may be parts of the calling convention that are

not obvious to you, such as the presence of a red zone or maintaining a particular stack

alignment. Or it could be that the function is called only from within the module, and the

compiler’s whole-program optimization decided to use a custom nonstandard calling

convention.

On the other hand, things determined at run-time can be changed, provided they are

changed in a manner consistent with their original documentation. For example, the message

numbers returned by Register Window Message  can change because the documentation

specifically requires you to call Register Window Message  to obtain the message number for

a particular named message.

If you want to know how to call a function, it’s perfectly valid to ask the compiler, because at

the end of the day, that’s how the function gets called. It’s all machine code. Whether that

machine code was generated by a compiler or by an assembler is irrelevant.

Caveat: I’m ignoring whole-program optimization and link-time code generation, which

allow the toolchain to rewrite calling conventions if all callers can be identified. We’ll see

more about this in a future article. The technique described in this article works best with

http://blogs.msdn.com/b/oldnewthing/archive/2009/04/23/9564015.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/14/58579.aspx


3/3

exported/imported functions, because it is not possible to identify all callers of such

functions, and the compiler is forced to use the official calling convention. (You can also use

it when inspecting .COD files for functions defined in a separate translation unit, for the

same reason. That’s the technique I used in the linked article.)

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

