
1/3

October 10, 2014

Some parts of an interface can change but others can't
devblogs.microsoft.com/oldnewthing/20141010-00

Raymond Chen

When I wrote about
asking the compiler to answer calling convention questions,
some people

were concerned about whether this was a reliable mechanism
or whether it was relying on

something that can change in the future.

This is a special case of the question,
“What parts of an interface can change, and what

can’t?”
And it all boils down to compile-time versus run-time.

Assuming you are interested in binary compatibility
(as opposed to merely source

compatibility),
then
a decision made at compile-time can never be changed
because the

decision is already hard-coded into the application.
For example, if you have a function that

takes a parameter that is
an enumeration, say,

enum FOO_OPTIONS

{

 FOO_HOP = 0,

 FOO_SKIP = 1,

 FOO_JUMP = 2,

};

then the values of
 FOO_HOP ,
 FOO_SKIP ,
and
 FOO_JUMP
are hard-coded into any program

that uses them.
The compiler will generate code like this:

; foo(FOO_JUMP);

 push 2

 call foo

Suppose you later change the header file to

enum FOO_OPTIONS

{

 FOO_HOP = 2,

 FOO_SKIP = 3,

 FOO_JUMP = 4,

};

https://devblogs.microsoft.com/oldnewthing/20141010-00/?p=43873
http://blogs.msdn.com/b/oldnewthing/archive/2013/02/20/10395379.aspx

2/3

Making a change in the new version of a header file
has no effect on any existing programs

which were
compiled with the old version of the header file.
There is no way for the foo

function to tell
whether the 2 it received as a parameter is a
 FOO_JUMP from the old header

file or
a FOO_HOP from the new one.

Therefore, you cannot reuse values in any
existing enumerations
or #define ‘s because the

values are already compiled
into existing programs.
If you had given the value 2 different

meanings in different
versions of the header file,
you would have in principle
no way of

knowing which header file the caller used.
Of course, you can invent external cues to let you

figure it out;
for example, there may be a separate set_foo_version
function
that callers

use in order to specify whether they are using the
old or new header file.
Of course, that also

means that if there are multiple components that
disagree on what version of foo they

want,
you have another problem.

Note that this is not the same as saying that the value of a symbol
cannot change.
We’ve seen

this happen in the past
with the PSH_WIZARD97 flag,
but these sorts of redirections are rare in

practice.

Another thing that is hard-coded into an application is the calling
convention.
Once code is

generated by the compiler to call a function,
that’s that.
You can’t change the calling

convention without breaking existing code.
That’s why you can ask the compiler,
“How would

you call this function?”
and trust the answer:
If the compiler generates code to call the

function using technique X
(register set-up, what gets pushed on the stack first, etc.),
then

the function had better accept technique X in perpetuity.
Of course, you need to be sure that

what you observe is in fact all
there is.
There may be parts of the calling convention that are

not obvious to you,
such as
the presence of a red zone
or
maintaining a particular stack

alignment.
Or it could be that the function is called only from within
the module, and the

compiler’s whole-program optimization decided
to use a custom nonstandard calling

convention.

On the other hand, things determined at run-time can be changed,
provided they are

changed in a manner consistent with their original
documentation.
For example, the message

numbers returned by
 RegisterWindowMessage can change
because the documentation

specifically requires you to call
 RegisterWindowMessage to obtain the
message number for

a particular named message.

If you want to know how to call a function,
it’s perfectly valid to ask the compiler,
because at

the end of the day,
that’s how the function gets called.
It’s all machine code.
Whether that

machine code was generated by a compiler
or by an assembler is irrelevant.

Caveat: I’m ignoring whole-program optimization
and link-time code generation,
which

allow the toolchain to rewrite calling conventions
if all callers can be identified.
We’ll see

more about this in a future article.
The technique described in this article works best with

http://blogs.msdn.com/b/oldnewthing/archive/2009/04/23/9564015.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/02/47184.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/14/58579.aspx

3/3

exported/imported functions,
because it is not possible to identify all callers of
such

functions,
and the compiler is forced to use the official calling convention.
(You can also use

it when inspecting .COD files for
functions defined in a separate translation unit,
for the

same reason.
That’s the technique I used in the linked article.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

