
1/2

October 16, 2014

If only DLLs can get DllMain notifications, how can an
EXE receive a notification when a thread is created (for
example)?

devblogs.microsoft.com/oldnewthing/20141016-00

Raymond Chen

When a DLL is loaded, it receives a DLL_PROCESS_ATTACH notification, and when it is

unloaded (or when the process terminates), it gets a DLL_PROCESS_DETACH notification.

DLLs also receive DLL_THREAD_ATTACH notifications when a thread is created and

DLL_THREAD_DETACH notifications when a thread exits. But what if you are an EXE? EXEs

don’t have a Dll Main , so there is no way to receive these notifications.

The trick here is to hire a lackey.

Create a helper DLL, called, say, LACKEY.DLL . Your EXE links to the lackey, and the lackey’s

job is to forward all Dll Main notifications back to your EXE. The DLL would naturally have

to have a way for your EXE to provide the callback address, so you might have a function

Register Lackey Callback .

typedef BOOL (CALLBACK *LACKEYNOTIFICATION)(DWORD dwReason);
LACKEYNOTIFICATION g_lackeyNotification;
void RegisterLackeyCallback(LACKEYNOTIFICATION lackeyNotification)
{
g_lackeyNotification = lackeyNotification;
}
BOOL WINAPI DllMain(
 HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)
{
if (g_lackeyNotification) g_lackeyNotification(dwReason);
return TRUE;
}

Of course, it is rather extravagant to hire a lackey just for this one task, so you will probably

just add lackey responsibilities to some other DLL you’ve written.

I don’t know if there’s a name for this design pattern, so I’m just going to call it the hired

lackey pattern.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20141016-00/?p=43833
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

