
1/1

October 28, 2014

A question about preventing the system from going to
the idle state turns out to be misguided

devblogs.microsoft.com/oldnewthing/20141028-00

Raymond Chen

A customer asked how they could have their program prevent the system from going to the

idle state. Specifically, when the system goes idle, the application gets into a weird state

where it starts leaking memory like crazy. The program normally uses around 100MB of

memory, but when the system goes idle, something funky happens and the program’s

memory usage shoots up to 4GB. To avoid this problem, they want to prevent the system

from entering the idle state. Now, if your application is a special-purpose program running

on a dedicated computer, then blocking the entry into the idle state might be acceptable.

After all, the user bought the computer specifically to run your program and nothing else. But

the description of the program provided by the customer did not suggest that this was the

case. It was just some program being developed for a general audience. Interfering with the

functioning of the entire system to hide a bug in your application is a horrible thing to do. It

means that when your program is running, idle-time tasks never run, the computer never

enters a low-power state, laptop batteries drain ten times faster than normal, and you

basically ruin the entire computer. What you should do is debug your program and fix the

memory leak.

This is like saying, “We manufacture car stereo systems, and we found that when the car is

coasting, the power from the alternator is not sufficient to drive the speakers. We would like

to prevent the car from coasting.”

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20141028-00/?p=43753
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://msdn.microsoft.com/library/aa383561
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

