
1/4

October 31, 2014

The case of the file that won't copy because of an Invalid
Handle error message

devblogs.microsoft.com/oldnewthing/20141031-00

Raymond Chen

A customer reported that they had a file that was “haunted”
on their machine:
Explorer was

unable to copy the file.
If you did a copy/paste, the copy dialog displayed an error.

1 Interrupted Action

Invalid file handle

⚿ Contract Proposal

Size: 110 KB

Date modified: 10/31/2013 7:00 AM

Okay, time to roll up your sleeves and get to work.
This investigation took several hours, but

you’ll be able to read
it in ten minutes
because I’m deleting all the dead ends and red

herrings,
and because I’m skipping over a lot of horrible grunt work,
like tracing a variable in

memory backward in time to see where
it came from.¹

The Invalid file handle error was most likely coming from
the error code

ERROR_INVALID_HANDLE .
Some tracing of handle operations
showed that a call to
 Get‐

FileInformationByHandle
was being passed INVALID_FILE_HANDLE
as the file handle,

and as you might expect,
that results in the invalid handle error code.

Okay, but why was Explorer’s file copying code getting confused
and trying to get

information from an invalid handle?

Code inspection showed that the handle in question is normally
set to a valid handle during

the file copying operation.
So the new question is,
“Why wasn’t this variable set to a valid

handle?”

https://devblogs.microsoft.com/oldnewthing/20141031-00/?p=43723

2/4

Debugging why something didn’t happen is harder than debugging
why it did happen,

because you can’t set a breakpoint of the form
“Break when X doesn’t happen.”
Instead
you

have to set a breakpoint in the code that you’re
pretty sure is being executed,
then trace

forward to see where execution strays from the intended path.

The heavy lifting of the file copy is done by the
 CopyFile2 function.
Explorer uses the

CopyFile2ProgressRoutine callback
to get information about the copy operation.
In

particular, it gets a handle to the destination file by
making a duplicate of the

hDestinationFile in the
 COPYFILE2_MESSAGE structure.
The question is now,
“Why

wasn’t Explorer told about the destination file that
was the destination of the file copy?”

Tracing through the file copy operation showed that the file
copy operation actually failed

because the destination file already exists.
The failure would normally be reported as

ERROR_FILE_EXISTS ,
and the offending
 GetFileInformationByHandle
would never

have taken place.
Somehow the file copy was being treated as having succeeded
even though

it failed.
That’s why we’re using an invalid handle.

The CopyFile2 function goes roughly like this:

HRESULT CopyFile2()

{

BOOL fSuccess = FALSE;

HANDLE hSource = OpenTheSourceFile(); // calls SetLastError() on failure

if (hSource != INVALID_HANDLE_VALUE)

{
 HANDLE hDest = CreateTheDestinationFile(); // calls SetLastError() on failure

 if (m_hDest != INVALID_HANDLE_VALUE)

 {

 if (CopyTheStuff(hSource, hDest)) // calls SetLastError() on failure

 {

 fSuccess = TRUE;

 }

 CloseHandle(hDest);

 }

 CloseHandle(hSource);

}
return fSuccess ? S_OK : HRESULT_FROM_WIN32(GetLastError());

}

Note: This is not the actual code,
so don’t go whining about the coding style or the

inefficiencies.
But it gets the point across for the purpose of this story.

The CreateTheDestinationFile function
failed because the file already existed,
and it

called SetLastError to set the
error code to
 ERROR_FILE_EXISTS ,
expecting the error

code to be picked up when it returned to the
 CopyFile2 function.

3/4

On the way out,
the CopyFile2 function
makes two calls to CloseHandle .
 CloseHandle

on a valid handle is not supposed
to modify the thread error state,
but somehow stepping

over the CloseHandle
call showed that the error code set by
 CreateTheDestinationFile

was
being reset back to ERROR_SUCCESS .
(Mind you, this was a poor design on the part of

the
 CopyFile2 function to leave the error code
lying around for an extended period,
since

the error code is highly volatile, and you would be best
served to get it while it’s still there.)

Closer inspection showed that the
 CloseHandle function
had been hooked by some

random DLL that had been
injected into Explorer.

The hook function was somewhat complicated
(more time spent trying to reverse-engineer

the hook function),
but in simplified form, it went something like this:

BOOL Hook_CloseHandle(HANDLE h)

{

HookState *state = (HookState*)TlsGetValue(g_tlsHookState);

if (!state || !state->someCrazyFlag) {

 return Original_CloseHandle(h);

}
... crazy code that runs if the flag is set ...

}

Whatever that crazy flag was for,
it wasn’t set on the current thread,
so the intent of the hook

was to have no effect in that case.

But it did have an effect.

The
TlsGetValue function
modifies the thread error state,
even on success.
Specifically, if it

successfully retrieves the thread local storage,
it sets the thread error state to

ERROR_SUCCESS .

Okay, now you can put the pieces together.

The file copy failed because the destination already exists.

The CreateTheDestinationFile
function called
 SetLast‐

Error(ERROR_FILE_EXISTS) .

The file copy function did some cleaning up before retrieving
the error code.

The cleanup functions are not expected to alter the thread error state.

But the cleanup function had been patched by a rogue DLL,
and the hook function did

alter the thread error state.

This alteration caused the file copy function to think that the
file was successfully

copied even though it wasn't.

In particular, the caller of the file copy function expects
to have received a handle to the

copy during one of the copy callbacks,
but the callback never occurred because the file

was never copied.

The variable that holds the handle therefore remains uninitialized.

http://msdn.microsoft.com/library/ms686812

4/4

This generates an invalid handle error when the code tries to use
that handle.

This error is shown to the user.

An injected DLL that patched a system call
resulted in Explorer looking like an idiot.
(As Alex

and Gaurav well know,
Explorer is perfectly capable of looking like an idiot without any

help.)

We were quite fortunate that the error
manifested itself as a failure to copy the file.
Imagine if

Explorer didn't use
 GetFileInformationByHandle
to get information about the file that

was copied.
The CopyFile2 function returns S_OK
even though it actually failed and no

file was copied.
Explorer would have happily reported,
"Congratulations, your file was copied

successfully!"

Stop and think about that for a second.

A rogue DLL injected into Explorer patches a system call incorrectly
and ends up causing all

calls to
 CopyFile2 to report success even if they failed.
The user then deletes the original,

thinking that the file was safely
at the destination,
then later discovers that, oops, looks like

the file was not copied
after all.
Sorry, it looks like that rogue DLL (which I'm sure had the

best
of intentions) had a subtle bug that caused you to lose all your data.

This is why, as a general rule,
Windows considers DLL injection and API hooking to be

unsupported.
If you hook an API, you not only have to emulate all the documented
behavior,

you also have to emulate all the undocumented behavior
that applications unwittingly rely

on.

(Yes, we contacted the vendor of the rogue DLL.
Ideally, they would get rid of their crazy DLL

injection and API hooking
because, y'know, unsupported.
But my guess is that they are going

to stick with it.
At least we can try to get them to fix their bug.)

¹
To do this, you identify the variable
and set a breakpoint when that variable is allocated.

(This can be tricky if the variable belongs to a class with
hundreds of instances;
you have to

set the breakpoint on the correct instance!)
When that breakpoint is hit,
you set a write

breakpoint on the variable,
then resume execution.
Then you hope that the breakpoint gets

hit.
When it does,
you can see who set the value.
"Oh, the value was copied from that other

variable."
Now you repeat the exercise with that other variable,
and so on.
This is very time-

consuming but largely uninteresting
so I've skipped over it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

