
1/2

November 21, 2014

Is it wrong to call SHFileOperation from a service?
Revised

devblogs.microsoft.com/oldnewthing/20141121-00

Raymond Chen

My initial reaction to this question was to say, “I don’t know if I’d call it wrong, but I’d call it

highly inadvisable.”
I’d like to revise my guidance.
It’s flat-out wrong, at least in the case

where you call it while impersonating.
The registry key HKEY_CURRENT_USER is bound to the

current user at the time the key is first accessed by a process:

The mapping between HKEY_CURRENT_USER and HKEY_USERS is per process and is
established the first time the process references HKEY_CURRENT_USER. The mapping is
based on the security context of the first thread to reference HKEY_CURRENT_USER. If this
security context does not have a registry hive loaded in HKEY_USERS, the mapping is
established with HKEY_USERS\.Default. After this mapping is established it persists, even if
the security context of the thread changes.

Emphasis mine.
This means that if you impersonate a user, and then access

HKEY_CURRENT_USER , then that binds HKEY_CURRENT_USER to the impersonated user.

Even if you stop impersonating, future references to HKEY_CURRENT_USER will still refer to

that user.
This is probably not what you expected.
The shell takes a lot of settings from the

current user. If you impersonate a user and then call into the shell, your service is now using

that user’s settings, which is effectively an elevation of privilege: An unprivileged user is now

modifying settings for a service. For example, if the user has customized the Print verb for

text files, and you use ShellExecute to invoke the print verb on a text document, you

are at the mercy of whatever the user’s print verb is bound to. Maybe it runs Notepad, but

maybe it runs pwnz0rd.exe. You don’t know.
Similarly, the user might have a per-user

registered copy hook or namespace extension, and now you just loaded a user-controlled

COM object into your service.
In both cases, this is known to insiders as hitting the jackpot.

Okay, so what about if you call ShellExecute or some other shell function while not

impersonating? You might say, “That’s okay, because the current user’s registry is the service

user, not the untrusted attacker user.” But look at that sentence I highlighted up there. Once

HKEY_CURRENT_USER get bound to a particular user, it remains bound to that user even

after impersonation ends. If somebody else inadvisedly called a shell function while

impersonating, and that shell function happens to be the first one to access

https://devblogs.microsoft.com/oldnewthing/20141121-00/?p=43563
http://blogs.msdn.com/b/oldnewthing/archive/2013/12/06/10474322.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724836(v=vs.85).aspx
http://msdn.microsoft.com/library/cc144063

2/2

HKEY_CURRENT_USER , then your call to a shell function while not impersonating will still use

that impersonated user’s registry. Congratulations, you are now running untrusted code, and

you’re not even impersonating any more!

So my recommendation is don’t do it. Don’t call shell functions while impersonating unless

the function is explicitly documented as supporting impersonation. (The only ones I’m aware

of that fall into this category are functions like SHGetFolderPath which accept an explicit

token handle.) Otherwise, you may have created (or in the case of copy hooks, definitely

created) a code injection security vulnerability in your service.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

