
1/5

November 28, 2014

A user's SID can change, so make sure to check the SID
history

devblogs.microsoft.com/oldnewthing/20141128-00

Raymond Chen

It doesn’t happen often,
but a user’s SID can change.
For example, when I started at

Microsoft,
my account was in the SYS-WIN4 domain,
which is where all the people on the

Windows 95 team
were placed.
At some point, that domain was retired,
and my account

moved to the REDMOND domain.
We saw
some time ago
that the format of a user SID is

S-1- version number (SID_REVISION)

-5- SECURITY_NT_AUTHORITY

-21- SECURITY_NT_NON_UNIQUE

-w-x-y- the entity (machine or domain) that issued the SID

-z the unique user ID for that entity

The issuing entity for a local account on a machine is the machine
to which the account

belongs.
The issuing entity for a domain account is the domain.

If an account moves between domains,
the issuing entity changes,
which means that the old

SID is not valid.
A new SID must be issued.

Wait, does this mean that if my account moves between domains,
then I lose access to all my

old stuff?
All my old stuff grants access to my old SID, not my new SID.

Fortunately, this doesn’t happen,
thanks to the
SID history.
When your account moves to the

new domain, the new domain controller
remembers all the previous SIDs you used to have.

When you authenticate against the domain controller,
it populates your token with your SID

history.
In my example, it means that my token not only says
“This is user number 271828 on

the REDMOND domain”,
it also says
“This user used to be known as number 31415 on the

SYS-WIN4 domain.”
That way, when the system sees an object whose ACL says,
“Grant

access to user 31415 on the SYS-WIN4 domain,”
then it should grant me access to that object.

https://devblogs.microsoft.com/oldnewthing/20141128-00/?p=43513
http://blogs.msdn.com/b/oldnewthing/archive/2004/03/15/89753.aspx
http://technet.microsoft.com/en-us/library/cc974384(v=WS.10).aspx

2/5

The existence of SID history means that recognizing users when they
return is more

complicated than a simple
 EqualSid ,
because EqualSid will say that
“No, S-1-5-21-

REDMOND-271828 is not equal to
S-1-5-21-SYS-WIN4-31415,”
even though both SIDs refer

to the same person.

If you are going to remember a SID and then try to recognize a user
when they return, you

need to search the SID history for a match,
in case the user changed domains between the

two visits.
The easiest way to do this is with the
 AccessCheck function.
For example,

suppose I visited your site while I belong to the
SYS-WIN4 domain,
and you remembered my

SID.
When I return,
you create a security descriptor that grants access to
the SID you

remembered,
and then you ask AccessCheck ,
“If I had an object that granted access only to

this SID,
would you let this guy access it?”

(So far, this is just recapping
stuff I discussed a few months ago.
Now comes the new stuff.)

There are a few ways of building up the security descriptor.
In all the cases, we will create a

security descriptor that
grants the specified SID some arbitrary access,
and then we will ask

the operating system whether the current
user has that access.

My arbitrary access shall be

#define FROB_ACCESS 1 // any single bit less than 65536

One way to build the security descriptor
is to let SDDL do the heavy lifting:
Generate the

string
 D:(A;;1;;;⟨SID⟩)
and then pass it to
 StringSecurityDescriptorToSecurity‐

Descriptor .

Another is to build it up with security descriptor functions.
I defer to the sample code in

MSDN
for an illustration.

The hard-core way is just to build the security descriptor by hand.
For a security descriptor

this simple, the direct approach involves
the least amount of code.
Go figure.

The format of the security descriptor we want to build is

struct ACCESS_ALLOWED_ACE_MAX_SIZE

{

 ACCESS_ALLOWED_ACE Ace;

 BYTE SidExtra[SECURITY_MAX_SID_SIZE - sizeof(DWORD)];

};

The ACCESS_ALLOWED_ACE_MAX_SIZE
structure represents the maximum possible size of an

ACCESS_ALLOWED_ACE .
The
 ACCESS_ALLOWED_ACE
leaves a DWORD for the SID
(Sid‐

Start),
so we add additional bytes afterward to accommodate the largest
valid SID.
If you

wanted to be more C++-like, you could make
 ACCESS_ALLOWED_ACE_MAX_SIZE
derive from

ACCESS_ALLOWED_ACE .

http://blogs.msdn.com/b/oldnewthing/archive/2014/08/29/10553610.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa446595(v=vs.85).aspx

3/5

struct ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR

{

 SECURITY_DESCRIPTOR_RELATIVE Header;

 ACL Acl;

 ACCESS_ALLOWED_ACE_MAX_SIZE Ace;

};
const ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR c_sdTemplate = {

 // SECURITY_DESCRIPTOR_RELATIVE

 {

 SECURITY_DESCRIPTOR_REVISION, // Revision

 0, // Reserved

 SE_DACL_PRESENT | SE_SELF_RELATIVE, // Control

 FIELD_OFFSET(ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR, Ace.Ace.SidStart),

 // Offset to owner

 FIELD_OFFSET(ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR, Ace.Ace.SidStart),

 // Offset to group

 0, // No SACL

 FIELD_OFFSET(ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR, Acl),

 // Offset to DACL

 },

 // ACL

 {

 ACL_REVISION, // Revision

 0, // Reserved

 sizeof(ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR) -

 FIELD_OFFSET(ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR, Acl),

 // ACL size

 1, // ACE count

 0, // Reserved

 },

 // ACCESS_ALLOWED_ACE_MAX_SIZE

 {

 // ACCESS_ALLOWED_ACE

 {

 // ACE_HEADER

 {

 ACCESS_ALLOWED_ACE_TYPE, // AceType

 0, // flags

 sizeof(ACCESS_ALLOWED_ACE_MAX_SIZE),// ACE size

 },

 FROB_ACCESS, // Access mask

 },

 },

};

Our template security descriptor says that it is a self-relative
security descriptor with an

owner, group and DACL,
but no SACL.
The DACL consists of a single ACE.
We set up

everything in the ACE except for the SID.
We point the owner and group to that same SID.

Therefore, this security descriptor is all ready for action
once you fill in the SID.

4/5

BOOL IsInSidHistory(HANDLE Token, PSID Sid)

{

 DWORD SidLength = GetLengthSid(Sid);

 if (SidLength > SECURITY_MAX_SID_SIZE) {

 // Invalid SID. That's not good.

 // Somebody is playing with corrupted data.

 // Stop before anything bad happens.

 RaiseFailFastException(nullptr, nullptr, 0);

 }

 ALLOW_ONLY_ONE_SECURITY_DESCRIPTOR Sd = c_sdTemplate;

 CopyMemory(&Sd.Ace.Ace.SidStart, Sid, SidLength);

As you can see, generating the security descriptor is a simple
matter of copying our template

and then replacing the SID.
The next step is performing an access check of the token
against

that SID.

 const static GENERIC_MAPPING c_GenericMappingFrob = {

 FROB_ACCESS,

 FROB_ACCESS,

 FROB_ACCESS,

 FROB_ACCESS,

 };

 PRIVILEGE_SET PrivilegeSet;

 DWORD PrivilegeSetSize = sizeof(PrivilegeSet);

 DWORD GrantedAccess = 0;

 BOOL AccessStatus = 0;

 return AccessCheck(&Sd, Token, FROB_ACCESS,

 const_cast<PGENERIC_MAPPING>(&c_GenericMappingFrob),

 &PrivilegeSet, &PrivilegeSetSize,

 &GrantedAccess, &AccessStatus) &&

 AccessStatus;

}

So let’s take this guy out for a spin.
Since I don’t know what is in your SID history,
I’m going

to pick something that should be in your token already
(Authenticated Users)
and something

that shouldn’t
(Local System).

5/5

// Note: Error checking elided for expository purposes.

void CheckWellKnownSid(HANDLE Token, WELL_KNOWN_SID_TYPE type)

{

 BYTE rgbSid[SECURITY_MAX_SID_SIZE];

 DWORD cbSid = sizeof(rgbSid);

 CreateWellKnownSid(type, NULL, rgbSid, &cbSid);

 printf("Is %d in SID history? %d\n", type,

 IsInSidHistory(Token, rgbSid));

}

int __cdecl wmain(int argc, wchar_t **argv)

{

 HANDLE Token;

 // In real life you had better error-check these calls,

 // to avoid a security hole.

 ImpersonateSelf(SecurityImpersonation);

 OpenThreadToken(GetCurrentThread(), TOKEN_QUERY, TRUE, &Token);

 RevertToSelf();

 CheckWellKnownSid(Token, WinAuthenticatedUserSid);

 CheckWellKnownSid(Token, WinLocalSystemSid);

 CloseHandle(Token);

 return 0;

}

Related reading:
Hey there token, long time no see! (Did you do something with your

hair?)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/09/12/10060082.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

