
1/3

December 8, 2014

Creating double-precision integer multiplication with a
quad-precision result from single-precision multiplication
with a double-precision result

devblogs.microsoft.com/oldnewthing/20141208-00

Raymond Chen

Suppose you want to multiply two double-word values producing a quad-word result, but

your processor supports only single-word multiplication with a double-word result. For

concreteness, let’s say that your processor supports 32 × 32 → 64 multiplication and you

want to implement 64 × 64 → 128 multiplication. (Sound like any processor you know?)

Oh boy, let’s do some high school algebra. Let’s start with unsigned multiplication.

Let x = A × 2³² + B and y = C × 2³² + D, where A, B, C, and D are all in the range 0 … 2³² − 1.

x × y = AC × 2 + (AD + BC) × 2 + BD

= AC × 2 + BD + (AD + BC) × 2

 provisional result cross-terms

Each of the multiplications (not counting the power-of-two multiplications) is a 32 × 32 →
64 multiplication, so they are something we have as a building block. And the basic

implementation is simply to perform the four multiplications and add the pieces together.

But if you have SSE, you can perform two multiplies in a single instruction.

 // Prepare our source registers

 movq xmm0, x // xmm0 = { 0, 0, A, B } = { *, *, A, B }

 movq xmm1, y // xmm1 = { 0, 0, C, D } = { *, *, C, D }

 punpckldq xmm0, xmm0 // xmm0 = { A, A, B, B } = { *, A, *, B }

 punpckldq xmm1, xmm1 // xmm1 = { C, C, D, D } = { *, C, *, D }

 pshufd xmm2, xmm1, _MM_SHUFFLE(2, 0, 3, 1)

 // xmm2 = { D, D, C, C } = { *, D, *, C }

The PMULUDQ instruction multiplies 32-bit lanes 0 and 2 of its source and destination

registers, producing 64-bit results. The values in lanes 1 and 3 do not participate in the

multiplication, so it doesn’t matter what we put there. It so happens that the PUNPCKLDQ

64 32

64 32

https://devblogs.microsoft.com/oldnewthing/20141208-00/?p=43453

2/3

instruction duplicates the value, but we really don’t care. I used * to represent a don’t-care

value.

 pmuludq xmm1, xmm0 // xmm1 = { AC, BD } // provisional result

 pmuludq xmm2, xmm0 // xmm2 = { AD, BC } // cross-terms

In two PMULUDQ instructions, we created the provisional result and the cross-terms. Now we

just need to add the cross-terms to the provisional result. Unfortunately, SSE does not have a

128-bit addition (or at least SSE2 doesn’t; who knows what they’ll add in the future), so we

need to do that the old-fashioned way.

 movdqa result, xmm1

 movdqa crossterms, xmm2

 mov eax, crossterms[0]

 mov edx, crossterms[4] // edx:eax = BC

 add result[4], eax

 adc result[8], edx

 adc result[12], 0 // add the first cross-term

 mov eax, crossterms[8]

 mov edx, crossterms[12] // edx:eax = AD

 add result[4], eax

 adc result[8], edx

 adc result[12], 0 // add the second cross-term

There we go, a 64 × 64 → 128 multiply constructed from 32 × 32 → 64 multiplies.

Exercise: Why didn’t I use the rax register to perform the 64-bit addition? (This is sort of

a trick question.)

That calculates an unsigned multiplication, but how do we do a signed multiplication? Let’s

work modulo 2 so that signed and unsigned multiplication are equivalent. This means that

we need to expand x and y to 128-bit values X and Y.

Let s = the sign bit of x expanded to a 64-bit value, and similarly t = the sign bit of y

expanded to a 64-bit value. In other words, s is 0xFFFFFFFF`FFFFFFFF if x < 0 and zero if x

≥ 0.

The 128-bit values being multiplied are

X = s × 2 + x

Y = t × 2 + y

The product is therefore

X × Y = st × 2 + (sy + tx) × 2 + xy

128

64

64

128 64

3/3

 zero adjustment unsigned product

The first term is zero because it overflows the 128-bit result. That leaves the second term as

the adjustment, which simplifies to “If x < 0 then subtract y from the high 64 bits; if y < 0

then subtract x from the high 64 bits.”

 if (x < 0) result.m128i_u64[1] -= y;

 if (y < 0) result.m128i_u64[1] -= x;

If we were still playing with SSE, we could compute this as follows:

 movdqa xmm0, result // xmm0 = { high, low }

 movq xmm1, x // xmm1 = { 0, x }

 movq xmm2, y // xmm2 = { 0, y }

 pshufd xmm3, xmm1, _MM_SHUFFLE(1, 1, 3, 2) // xmm3 = { xhi, xhi, 0, 0 }

 pshufd xmm1, xmm1, _MM_SHUFFLE(1, 0, 3, 2) // xmm1 = { x, 0 }

 pshufd xmm4, xmm2, _MM_SHUFFLE(1, 1, 3, 2) // xmm4 = { yhi, yhi, 0, 0 }

 pshufd xmm2, xmm2, _MM_SHUFFLE(1, 0, 3, 2) // xmm2 = { y, 0 }

 psrad xmm3, 31 // xmm3 = { s, s, 0, 0 } = { s, 0 }

 psrad xmm4, 31 // xmm4 = { t, t, 0, 0 } = { t, 0 }

 pand xmm3, xmm2 // xmm3 = { x < 0 ? y : 0, 0 }

 pand xmm4, xmm1 // xmm4 = { y < 0 ? x : 0, 0 }

 psubq xmm0, xmm3 // first adjustment

 psubq xmm0, xmm4 // second adjustment

 movdqa result, xmm0 // update result

The code is a bit strange because SSE2 doesn’t have a full set of 64-bit integer opcodes. We

would have liked to have used a psraq instruction to fill a 64-bit field with a sign bit. But

there is no such instruction, so instead we duplicate the 64-bit sign bit into two 32-bit sign

bits (one in lane 2 and one in lane 3) and then fill the lanes with that bit using psrad .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

