
1/4

December 10, 2014

If you get a procedure address by ordinal, you had better
be absolutely sure it's there, because the failure mode is
usually indistinguishable from success

devblogs.microsoft.com/oldnewthing/20141210-00

Raymond Chen

A customer reported that the GetProcAddress
function was behaving strangely.

We have this code in one of our tests:

typedef int (CALLBACK *T_FOO)(int);

void TestFunctionFoo(HINSTANCE hDLL)

{

 // Function Foo is ordinal 1 in our DLL

 T_FOO pfnFoo = (T_FOO)GetProcAddress(hDLL, (PCSTR)1);

 if (pfnFoo) {

 ... run tests on pfnFoo ...

 }

}

Recently, this test started failing in bizarre ways.
When we stepped through the code, we
discovered that
 pfnFoo ends up calling
 Bar instead of Foo .
The first time we try to test
pfnFoo ,
we get stack corruption because
 Bar has a different function prototype
from
Foo ,
and of course on top of that the test fails horribly because
it’s calling the wrong function!

When trying to narrow the problem, we found that the issue
began when the test was run
against a version of the DLL
that was missing the Foo function entirely.
The line

 Foo @1

was removed from the DEF file.
Why did the call to
 GetProcAddress succeed and return
the wrong
function?
We expected it to fail.

Let’s first consider the case where a DLL exports no functions
by ordinal.

EXPORTS

 Foo

 Bar

 Plugh

https://devblogs.microsoft.com/oldnewthing/20141210-00/?p=43433
http://plugh.com/

2/4

The linker builds a list of
all the exported functions (in an unspecified order)
and fills in two

arrays based on that list.
If you look in the DLL image, you’ll see something like this:

Exported Function Table

00049180 address of Bar

00049184 address of Foo

0004918C address of Plugh

Exported Names

00049190 address of the string "Bar"

00049194 address of the string "Foo"

00049198 address of the string "Plugh"

There are two parallel arrays,
one with function addresses and one with function names.
The

string "Bar" is the first entry in the
exported names table,
and the function Bar is the first

entry in the
exported function table.
In general, the string in the
Nth entry in the exported

names table
corresponds to the function in the
Nth entry of the exported function table.

Since it is only the relative position that matters, let’s replace
the addresses with indices.

Exported Function Table

[1] address of Bar

[2] address of Foo

[3] address of Plugh

Exported Names

[1] address of the string "Bar"

[2] address of the string "Foo"

[3] address of the string "Plugh"

Okay, now let’s introduce functions exported by ordinal.
When you do that, you’re telling the

linker,
“Make sure this function goes into the NNth slot in the exported
function table.”

Suppose your DEF file went like this:

EXPORTS

 Foo @1

 Bar

 Plugh

This says “First thing we do
is put Foo in slot 1.
Once that’s done, fill in the rest arbitrarily.”

The linker says,
“Okay, I have a total of three functions, so let me build two tables
with three

entries each.”

Exported Function Table

[1] address of ?

[2] address of ?

[3] address of ?

Exported Names

[1] address of ?

[2] address of ?

[3] address of ?

http://bartleby.com/73/1017.html

3/4

“Now I place Foo in slot 1.”

Exported Function Table

[1] address of Foo

[2] address of ?

[3] address of ?

Exported Names

[1] address of the string "Foo"

[2] address of ?

[3] address of ?

“Now I fill in the rest arbitrarily.”

Exported Function Table

[1] address of Foo

[2] address of Bar

[3] address of Plugh

Exported Names

[1] address of the string "Foo"

[2] address of the string "Bar"

[3] address of the string "Plugh"

Since you explicitly placed Foo in slot 1,
when you do a
 GetProcAddress(hDLL, 1) ,
you

will get
 Foo .
On the other hand, if you do a
 GetProcAddress(hDLL, 2) ,
you will get

Bar ,
or at least you will with this build.
With the next build, you may get something else,

because the linker just fills in the slots arbitrarily,
and next time, it may choose to fill them

arbitrarily
in some other order.
Furthermore,
if you do a
 GetProcAddress(hDLL, 6) ,
you

will get NULL because the table
has only three functions in it.

I hope you see where this is going.

If you delete Foo from the EXPORTS
section,
this stops exporting Foo but says nothing

about
what goes into slot 1.
As a result, the linker is free to put anything it wants into that

slot.

Exported Function Table

[1] address of Bar

[2] address of Plugh

Exported Names

[1] address of the string "Bar"

[2] address of the string "Plugh"

Now, when you do a
 GetProcAddress(hDLL, 1) ,
you get Bar ,
since that’s the function

that happened to fall into slot 1
this time.

The moral of the story is that if you try to obtain a function
by ordinal,
then it had better be

there,
because there is no reliable way of being sure that the function
you got is one that was

explicitly placed there,
as opposed to some other function that happened to be assigned that

slot arbitrarily.

4/4

Related reading:
How are DLL functions exported in 32-bit Windows?

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2006/07/18/669668.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

