
1/3

December 11, 2014

What states are possible in a DRAWITEMSTRUCT
structure?

devblogs.microsoft.com/oldnewthing/20141211-00

Raymond Chen

The DRAW ITEM STRUCT structure has an item State member which contains a number of

bits describing the state of the item being drawn. How do those states map to the underlying

control? Most of the states are rather obvious. For a list box item to be selected, it means that

the item is part of the selection. But what does selected mean for a button? Since people like

tables, I’ll put the answer in a table:

Menu Listbox Combobox Button

CtlType ODT_MENU ODT_LISTBOX ODT_COMBOBOX ODT_BUTTON

itemID menu item ID item index or
−1

item index or −1

ODS_SELECTED Selected Selected Selected Pushed

ODS_GRAYED Grayed

ODS_DISABLED Disabled Disabled Disabled Disabled

ODS_CHECKED Checked

ODS_FOCUS Focus Focus Focus

ODS_DEFAULT Default menu
item

ODS_HOTLIGHT Hover

ODS_INACTIVE Inactive

ODS_NOACCEL HideAccel HideAccel HideAccel HideAccel

ODS_NOFOCUSRECT HideFocus HideFocus HideFocus

ODS_COMBOBOXEDIT Is edit control

https://devblogs.microsoft.com/oldnewthing/20141211-00/?p=43423

2/3

Static Header Tab Listview Sta

CtlType ODT_STATIC ODT_HEADER ODT_TAB ODT_LISTVIEW

itemID item index item index item index par
inde

ODS_SELECTED Pushed Selected Selected

ODS_GRAYED

ODS_DISABLED Oops

ODS_CHECKED AutoChecked

ODS_FOCUS Focus

ODS_DEFAULT

ODS_HOTLIGHT Hover

ODS_INACTIVE

ODS_NOACCEL HideAccel

ODS_NOFOCUSRECT

ODS_COMBOBOXEDIT

Okay, now that it’s all in a table, how do I read the table? A box is blank if the corresponding

flag is not currently used by the control type. (No guarantees about the future.) For example,

as of this writing, button controls do not set an itemID , nor do they ever ask for

ODS_GRAYED . You may have noticed that the box for CtlType is blank for status controls.

That’s an oops. The status bar control forgot to set the CtlType when it sends the

WM_DRAW ITEM message, so the value is uninitialized garbage. The way to detect a status bar

control is to check the window handle. (This works in general. You can always detect a

control by checking the window handle.) For list boxes and combo boxes, the itemID can

have the special value -1 to mean “I am drawing a list box/combo box where no item is

selected.” For list boxes, this happens when the list box is empty. For combo boxes, this

happens when the user types text into the edit box that does not match any of the items in the

list portion of the combo box. Most of the other box entries are self-explanatory. For the most

part, the flag name matches the conditions under which the corresponding flag is set. For

example, the ODS_FOCUS flag is set when the list box item being drawn is the selected item.

Note that the ODS_SELECTED flag is used for button and header controls to indicate that the

control should be drawn in the pushed state. For example, the user may have put focus on a

button control and pressed the space bar and not yet released it, or the application may have

manually set the BST_PUSHED state. Header controls can get into a pushed state if you

3/3

enable the HDS_BUTTONS style. List view controls set the ODS_CHECKED flag if a check box

should be drawn over the item. This happens if the LVS_EX_AUTO CHECK SELECT extended

style is specified and the item is selected. (Normally, the check box is drawn to the side as a

state image.) The ODS_COMBO BOX EDIT flag is used only by combo box controls. It is set if the

item being drawn is the edit portion of a combo box control. If not set, then the item being

drawn is in the list box portion of the combo box control. Finally, there is a box marked Oops.

The static control is supposed to set ODS_DISABLED if the static control is disabled. And

that’s what happens if you are using the classic static control. However, there is a typo in the

the fancy themed static control, and it sets the ODS_DISBALED flag incorrectly. If you are

owner-drawing a themed static control, and you want to draw differently depending on

whether the control is disabled, then you should ignore the ODS_DISABLED flag and instead

draw the disabled state based on the result of calling Is Window Enabled function.

The bug in the themed static control cannot be fixed for compatibility reasons. I can pretty

much guarantee that there is some application which doesn’t draw correctly if the

ODS_DISABLED flag is not set.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

