Notes on calculating constants in SSE registers

=. devblogs.microsoft.com/oldnewthing/20141215-00

December 15, 2014

>
Raymond Chen

There are a few ways to load constants into SSE registers.

e Load them from memory.

e Load them from general purpose registers via movd .

e Insert selected bits from general purpose registers via pinsr[b|w|d|q] .
e Try to calculate them in clever ways.

Loading constants from memory incurs memory access penalties. Loading or inserting them
from general purpose registers incurs cross-domain penalties. So let’s see what we can do
with clever calculations.

The most obvious clever calculations are the ones for setting a register to all zeroes or all
ones.

pxor xmm@, xmm@ ; set all bits to zero
pcmpeqd xmm@, xmm@ ; set all bits to one

These two idioms are special-cased in the processor and execute faster than normal pxor and
pcmpeqd instructions because the results are not dependent on the previous value in xmmo .

There’s not much more you can do to construct other values from zero, but a register with all
bits set does create additional opportunities.

If you need a value loaded into all lanes whose bit pattern is either a bunch of 0’s followed by
a bunch of 1’s, or a bunch of 1’s followed by a bunch of 0’s, then you can shift in zeroes. For
example, assuming you've set all bits in xmm@ to 1, here’s how you can load some other
constants:

pcmpeqd xmm@, xmm® ; set all bits to one

-then-

pslld xmmo, 30 ; all 32-bit lanes contain OxCOOOO000
-or-

psrld xmm@, 29 ; all 32-bit lanes contain Ox00000007
-or-

psrld xmmo, 31 ; all 32-bit lanes contain Ox00000001

1/3

https://devblogs.microsoft.com/oldnewthing/20141215-00/?p=43403

Intel suggests loading 1 into all lanes with the sequence

pxor XmmoO, xmmo ;
pcmpeqd xmmi, xmml ;
psubd xmme, xmml ;

but that not only takes more instructions but also consumes two registers, and registers are
at a premium since there are only eight of them. The only thing I can think of is that psubd

xmmo = { 0, 0, O, O
xmml = { -1, -1, -1,
xmmo = {1, 1, 1, 1

might be faster than psrld .

In general, to load 27-1 into all lanes, you do

pcmpeqd xmm@, xmm@ ;
-then-

psrlw xmm®, 16-n ;
-or-

psrld xmm®, 32-n ;
-or-

psrlqg xmm®, 64-n ;

set all bits to one
clear top 16-n bits
clear top 32-n bits

clear top 64-n bits

Conversely, if you want toload ~(2n-1) = -2n

pcmpeqd xmm@, xmmO ;
-then-

psllw xmm@, n ;
-or-

pslld xmm@, n ;
-or-

psllg xmmO, n ;

And if the value you want has all its set bits in the middle, you can combine two shifts (and

set all bits to one

clear bottom n bits

clear bottom n bits

clear bottom n bits

}
-1}
}

of all 16-bit lanes
of all 32-bit lanes

of all 64-bit lanes

into all lanes, you shift the other way.

of all 16-bit lanes = 216 - 2n
of all 32-bit lanes = 232 - 2n
of all 64-bit lanes = 264 - 2n

stick something in between the two shifts to ameliorate the stall):

pcmpeqd xmm@, xmmO ;
-then-

psrlw xmm@, 13 ;

psllw xmmo, 4 ;
-or-

psrld xmmo, 31 ;

pslld xmmo, 3 ;

set all bits to one

all lanes = Ox0007
all lanes = Ox0070
all lanes = Ox00000001
all lanes = Ox00000008

If you want to set high or low lanes to zero, you can use pslldq and psrldq .

2/3

pcmpeqd xmm@, xmmo ;

-then-

pslldg xmmo, 2
-or-

pslldg xmmo, 4
-or-

pslldg xmm@, 8
-or-

psrldg xmm@, 2
-or-

psrldg xmmoe, 4
-or-

psrldg xmm@, 8

4

set all bits to one

clear bottom word, xmm@®

clear bottom dword, xmmo®
clear bottom gword, xmmo@

clear top word, xmm@ = {

clear top dword, xmmO@

clear top gword, xmmo@

={ -1, -1, -1, -1, -1, -1, -1, 0 }
={-1, -1, -1, 0}

={-1 0}

o, -1, -1, -1, -1, -1, -1, -1}
{o, -1, -1, -1}

{o -1}

No actual program today. Just some notes from my days writing SSE assembly language.

Bonus chatter: There is an intrinsic for pxor xmmReg, xmmReg :_mm setzero sil128.

However, there is no corresponding intrinsic for pcmpeqd xmmReg, xmmReg , which would
presumably be called _mm_setones_si128 or _mm_setmone_epiNN . In order to get all-
ones, you need to get a throwaway register and compare it against itself. The cheapest

throwaway register is one that is set to zero, since that is special-cased inside the processor.

_ . ml128i zero =
_ ml128i ones

Raymond Chen

Follow

_mm_setzero_si128();
_mm_cmpeq_epi32(zero,

zero);

3/3

http://msdn.microsoft.com/en-us/library/ys7dw0kh(v=vs.90).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

