
1/4

December 22, 2014

Setting, clearing, and testing a single bit in an SSE
register

devblogs.microsoft.com/oldnewthing/20141222-00

Raymond Chen

Today I’m going to set, clear, and test a single bit in an SSE register.

Why?

On Mondays I don’t have to explain why.

First, we use the trick from
last time
that lets us generate constants
where all set bits are

contiguous,
and apply it to the case where we want only one bit.

 pcmpeqd xmm0, xmm0 ; set all bits to one

 psrlq xmm0, 63 ; set both 64-bit lanes to 1

IF N LT 64

 psrldq xmm0, 64 / 8 ; clear the upper lane

ELSE

 pslldq xmm0, 64 / 8 ; clear the lower lane

ENDIF

IF N AND 63

 psllq xmm0, N AND 63 ; shift the bit into position

ENDIF

We start by setting all bits in xmm0 .

We then shift both 64-bit lanes right by 63 positions,
putting 1 in each lane.

If the bit we want is in the upper half,
then we shift the entire value left 8 bytes (64 bits).
This

clears the bottom 64 bits and leaves the upper 64
bits with all bits set.
(Similarly, if the bit we

want is in the lower half,
shifting right instead of left.)

Finally, if we need a bit other than 0 or 64, we shift
left by the desired amount within the 64-

bit lane.

Now that we can generate a single bit value,
we can use it to set and clear individual bits.

https://devblogs.microsoft.com/oldnewthing/20141222-00/?p=43333
http://blogs.msdn.com/b/oldnewthing/archive/2014/12/15/10580665.aspx

2/4

; Set bit N in xmm1 (using xmm0 as a helper)

 ⟨set xmm0 = 2^N⟩

 por xmm1, xmm0

; Clear bit N in xmm1 (putting result in xmm0)

 ⟨set xmm0 = 2^N⟩

 pandn xmm0, xmm1

To test a bit, we can use the PMOVMSKB instruction.

IF 7 - (N AND 7)

 psllq xmm0, 7 - (N AND 7)

ENDIF

 pmovmskb eax, xmm0

IF N LT 64

 test al, 1 SHL (N / 8)

ELSE

 test ah, 1 SHL (N / 8 - 8)

ENDIF

First, we move the bit we want to test into a position that is 7 mod 8,
because those are the

bits captured by the
 PMOVMSKB instruction.
(If the bit is already there, then we don’t need to

do anything.)
Then we use the PMOVMSKB instruction to extract the bits
into a general

purpose register and test the one that corresponds to
the bit we want.

Alternatives:
I tend to stick to SSE2 instructions because they are widely supported
(and

are indeed part of the
minimum system requirements for Windows 8),
but if you are willing

to do CPU dispatching on SSE4, you can
use PTEST , which might be faster, I haven’t tested

it.

You could use movd and movq
to load up a constant,
but you do incur domain crossing

penalties.
Another alternative is to put the constant in memory,
but then you pay an even

bigger cost for memory access
if the value is not in cache.

Other remarks:
Of course, you want to schedule the instructions better than the
way I

wrote them above.
I wrote them in a logical order above to make the algorithm clearer,
but

you will want to reorder them to avoid stalls.

Using intrinsics:

http://windows.microsoft.com/en-us/windows-8/system-requirements

3/4

__m128i Calc2ToTheN(int N)

{

__m128i zero = _mm_setzero_si128();

__m128i ones = _mm_cmpeq_epi32(zero, zero);

__m128i onesLowHigh = _mm_slli_epi64(ones, 63);

__m128i singleOne = N < 64 ? _mm_srli_si128(onesLowHigh, 64 / 8) :

 _mm_slli_si128(onesLowHigh, 64 / 8);

return _mm_slli_epi64(singleOne, N & 63);

}

__m128i SetBitN(__m128i value, int N)

{

 return _mm_or_si128(value, Calc2ToTheN(N));

}

__m128i ClearBitN(__m128i value, int N)

{

 return _mm_andnot_si128(value, Calc2ToTheN(N));

}

__m128i TestBitN(__m128i value, int N)

{

__m128i positioned = _mm_slli_epi64(value, 7 - (N & 7));

return (_mm_movemask_epi8(positioned) & (1 << (N / 8))) != 0;

}

Note that since these functions pass a non-constant value to
intrinsics like

_mm_slli_epi64 ,
you incur additional runtime penalties because the compiler
is going to

use a movd to load up the value,
incurring the exact domain crossing penalty we are trying

to avoid.
To avoid this, templatize the function to force the bit number
to be determined at

compile time.

4/4

template<int N>

__m128i Calc2ToTheN()

{

__m128i zero = _mm_setzero_si128();

__m128i ones = _mm_cmpeq_epi32(zero, zero);

__m128i onesLowHigh = _mm_slli_epi64(ones, 63);

__m128i singleOne = N < 64 ? _mm_srli_si128(onesLowHigh, 64 / 8) :

 _mm_slli_si128(onesLowHigh, 64 / 8);

return _mm_slli_epi64(singleOne, N & 63);

}

template<int N>

__m128i SetBitN(__m128i value)

{

 return _mm_or_si128(value, Calc2ToTheN<N>());

}

template<int N>

__m128i ClearBitN(__m128i value)

{

 return _mm_andnot_si128(value, Calc2ToTheN<N>());

}

template<int N>

__m128i TestBitN(__m128i value)

{

__m128i positioned = _mm_slli_epi64(value, 7 - (N & 7));

return (_mm_movemask_epi8(positioned) & (1 << (N / 8))) != 0;

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

