
1/6

December 26, 2014

Debugging walkthrough: Access violation on nonsense
instruction

devblogs.microsoft.com/oldnewthing/20141226-00

Raymond Chen

A colleague of mine asked for help puzzling out a mysterious crash dump which arrived via

Windows Error Reporting.

rax=00007fff219c5000 rbx=00000000023c8380 rcx=00000000023c8380
rdx=0000000000000000 rsi=00000000043f0148 rdi=0000000000000000
rip=00007fff21af2d22 rsp=000000000392e518 rbp=000000000392e580
r8=00000000276e4639 r9=00000000043b2360 r10=00000000ffffffff
r11=0000000000000000 r12=0000000000000001 r13=0000000000000000
r14=000000000237cfc0 r15=00000000023d3ea0
iopl=0 nv up ei pl zr na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010246
nosebleed!CNosebleed::OnFrimble+0x1f891a:
00007fff`21af2d22 30488b xor byte ptr [rax-75h],cl ds:00007fff`219c4f8b=41

Well that’s a pretty strange instruction. Especially since it doesn’t match up with the source

code at all.

https://devblogs.microsoft.com/oldnewthing/20141226-00/?p=43293

2/6

void CNosebleed::OnFrimble(...)
{
 ...
 if (CanFrumble(...))
 {
 ...
 }
 else
 {
 hr = pCereal->AddMilk(pCarton);
 if (SUCCEEDED(hr))
 {
 pCereal->Snap();
 pCereal->Crackle(false);
 if (SUCCEEDED(pCereal->Pop(uId)) // ← crash here
 {

 }
 }
 }

}

There is no bit-toggling in the actual code. The method calls to Snap, Crackle, and Pop are all

interface calls and therefore should be vtable calls. We are clearly in a case of a bogus return

address, possibly a stack smash (and therefore cause for concern from a security standpoint).

My approach was to try to figure out what was happening just before the crash. And that

meant figuring out how we ended up in the middle of an instruction.

Here is the code surrounding the crash point.

00007fff`21af2d17 ff90d0020000 call qword ptr [rax+2D0h]
00007fff`21af2d1d 488b03 mov rax,qword ptr [rbx]
00007fff`21af2d20 8b5530 mov edx,dword ptr [rbp+30h]
00007fff`21af2d23 488bcb mov rcx,rbx

Notice that the code that crashed is actually the last byte of the mov edx, dword ptr

[rbp+30h] (the 30) and the first two bytes of the mov rcx, rbx (the 488b).

Disassembling backward is a tricky business on a processor with variable-length instructions,

so to get my bearings, I looked for the call to Can Frumble :

0:011> #CanFrumble nosebleed!CNosebleed::OnFrimble
nosebleed!CNosebleed::OnFrimble+0x1f883b
00007fff`21af2c43 e8e0e40f00 call nosebleed!CNosebleed::CanFrumble

The # command means “Start disassembling at the specified location and stop when you

see the string I passed.” This is an automated way of just hitting u until you get to the thing

you are looking for.

http://www.ricekrispies.com/snap-crackle-pop

3/6

Now that I am at some known good code, I can disassemble forward:

00007fff`21af2c48 488bcb mov rcx,rbx
00007fff`21af2c4b 84c0 test al,al
00007fff`21af2c4d 0f849a000000 je nosebleed!CNosebleed::OnFrimble+0x1f88e5
(00007fff`21af2ced)

The above instructions check whether the Can Frumble returned true , and if not, it jumps

to 00007fff`21af2ced . Since we know that we are in the false path, we follow the jump.

// Make a vtable call into pCereal->AddMilk()
00007fff`21af2ced 488b03 mov rax,qword ptr [rbx] ; vtable
00007fff`21af2cf0 498bd7 mov rdx,r15 ; pCarton
00007fff`21af2cf3 ff9068010000 call qword ptr [rax+168h] ; call
00007fff`21af2cf9 8bf8 mov edi,eax ; save to hr
00007fff`21af2cfb 85c0 test eax,eax ; succeeded?
00007fff`21af2dfd 0f880dffffff js nosebleed!CNosebleed::OnFrimble+0x1f8808
(00007fff`21af2c10)
// Now call Snap()
00007fff`21af2d03 488b03 mov rax,qword ptr [rbx] ; vtable
00007fff`21af2d06 488bcb mov rcx,rbx ; "this"
00007fff`21af2d09 ff9070020000 call qword ptr [rax+270h] ; Snap
/ Now call Crackle
00007fff`21af2d0f 488b03 mov rax,qword ptr [rbx] ; vtable
00007fff`21af2d12 33d2 xor edx,edx ; parameter: false
00007fff`21af2d14 488bcb mov rcx,rbx ; "this"
00007fff`21af2d17 ff90d0020000 call qword ptr [rax+2D0h] ; Crackle
// Get ready to Pop
00007fff`21af2d1d 488b03 mov rax,qword ptr [rbx] ; vtable
00007fff`21af2d20 8b5530 mov edx,dword ptr [rbp+30h] ; uId
00007fff`21af2d23 488bcb mov rcx,rbx ; "this"

But we never got to execute the Pop because our return address from Crackle got messed

up.

Let’s follow the call into Crackle .

0:011> dps @rbx l1
00000000`02b4b790 00007fff`219c50a0 nosebleed!CCereal::`vftable'
0:011> dps 00007fff`219c50a0+2d0 l1
00007fff`219c5370 00007fff`21aa5c28 nosebleed!CCereal::Crackle
0:011> u 00007fff`21aa5c28
nosebleed!CCereal::Crackle:
00007fff`21aa5c28 889163010000 mov byte ptr [rcx+163h],dl
00007fff`21aa5c2e c3 ret

So at least the pCereal pointer seems to be okay. It has a vtable and the slot in the vtable

points to the function we expect. The Crackle method merely stashes the bool parameter

into a member variable. No stack corruption here because rbx is nowhere near rsp .

4/6

0:012> db @rbx+163 l1
00000000`02b4b8f3 ?? ?

Sadly, the byte in question was not captured in the dump, so we cannot verify whether the

call actually was made. Similarly, the members of CCereal manipulated by the Snap

method were also not captured in the dump, so we can’t verify that either. (The only member

of CCereal captured in the dump is the vtable itself.)

So we can’t find any evidence one way or the other as to whether any of the calls leading up to

Pop actually occurred. Maybe we can try to figure out how many misaligned instructions we

managed to execute before we crashed, see if that reveals anything. To do this, I’m going to

disassemble at varying incorrect offsets and see which ones lead to the instruction that

crashed.

0:011> u .-1 l2
nosebleed!CNosebleed::OnFrimble+0x1f8919:
00007fff`21af2d21 55 push rbp
00007fff`21af2d22 30488b xor byte ptr [rax-75h],cl
// ^^ this looks interesting; we'll come back to it
0:011> u .-3 l2
nosebleed!CNosebleed::OnFrimble+0x1f8917:
00007fff`21af2d1f 038b5530488b add ecx,dword ptr [rbx-74B7CFABh]
00007fff`21af2d25 cb retf
// ^^ this doesn't lead to the crashed instruction
0:011> u .-4 l2
nosebleed!CNosebleed::OnFrimble+0x1f8916:
00007fff`21af2d1e 8b03 mov eax,dword ptr [rbx]
00007fff`21af2d20 8b5530 mov edx,dword ptr [rbp+30h]
// ^^ this doesn't lead to the crashed instruction
0:012> u .-5 l3
nosebleed!CNosebleed::OnFrimble+0x1f8914:
00007fff`21af2d1c 00488b add byte ptr [rax-75h],cl
00007fff`21af2d1f 038b5530488b add ecx,dword ptr [rbx-74B7CFABh]
00007fff`21af2d25 cb retf
// ^^ this doesn't lead to the crashed instruction
0:012> u .-6 l3
nosebleed!CNosebleed::OnFrimble+0x1f8913:
00007fff`21af2d1b 0000 add byte ptr [rax],al
00007fff`21af2d1d 488b03 mov rax,qword ptr [rbx]
00007fff`21af2d20 8b5530 mov edx,dword ptr [rbp+30h]
// ^^ this doesn't lead to the crashed instruction

Exercise: Why didn’t I bother checking .-2 ?

You only need to test as far back as the maximum instruction length, and in practice you can

give up much sooner because the maximimum instruction length involves a lot of prefixes

which are unlikely to occur in real code.

The only single-instruction rewind that makes sense is the push rbp . Let’s see if it matches.

5/6

0:011> ?? @rbp
unsigned int64 0x453e700
0:011> dps @rsp l1
00000000`0453e698 00000000`0453e700

Yup, it lines up. This wayward push is also consistent with the stack frame layout for the

function.

nosebleed!CNosebleed::OnFrimble:
00007fff`218fa408 48895c2410 mov qword ptr [rsp+10h],rbx
00007fff`218fa40d 4889742418 mov qword ptr [rsp+18h],rsi
00007fff`218fa412 55 push rbp
00007fff`218fa413 57 push rdi
00007fff`218fa414 4154 push r12
00007fff`218fa416 4156 push r14
00007fff`218fa418 4157 push r15
00007fff`218fa41a 488bec mov rbp,rsp
00007fff`218fa41d 4883ec60 sub rsp,60h

The values of rbp and rsp should differ by 0x60 .

0:012> ?? @rbp-@rsp
unsigned int64 0x68

The difference is in error by 8 bytes, exactly the size of the rbp register that was pushed.

It therefore seems highly likely that the push rbp was executed.

Repeating the exercise to find the instruction before the push rbp shows that no

instruction fell through to the push rbp . Therefore, execution jumped to

00007fff`21af2d21 somehow.

Another piece of data is that rax matches the value we expect it to have, sort of. Here are

some selected lines from earlier in the debug session:

// What we expected to have executed
00007fff`21af2d1e 8b03 mov eax,dword ptr [rbx]
// The value we expected to have fetched
0:011> dps @rbx l1
00000000`02b4b790 00007fff`219c50a0 nosebleed!CCereal::`vftable'
// The value in the rax register
rax=00007fff219c5000 ...

The value we expect is 00007fff`219c50a0 , but the value in the register has the bottom

eight bits cleared.

Putting this all together, my theory is that the CPU executed the instruction at

00007fff`21af2d1e , and then due to some sort of hardware failure, instead of

incrementing the rip register by two, it (1) incremented it by three, and then (2) as part of

6/6

its confusion, zeroed out the bottom byte of rax . The erroneous rip led to the rogue

push rbp and the crash on the nonsensical xor .

It's not a great theory, but it's all I got.

As to what sort of hardware failure could have occurred: This particular failure was reported

twice, so a cosmic ray is less likely to be the culprit (because you have to get lightning to

strike twice) than overheating or overclocking.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2005/04/12/407562.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

