More notes on calculating constants in SSE registers

=. devblogs.microsoft.com/oldnewthing/20150105-00

January 5, 2015

Rayinond Chen

A few weeks ago I noted some tricks for creating special bit patterns in all lanes, but I forgot
to cover the case where you treat the 128-bit register as one giant lane: Setting all of the least

significant N bits or all of the most significant N bits.

This is a variation of the trick for setting a bit pattern in all lanes, but the catch is that the
pslldq instruction shifts by bytes, not bits.

We'll assume that N is not a multiple of eight, because if it were a multiple of eight, then the
pslldg or psrldq instruction does the trick (after using pcmpeqd to fill the register with
ones).

One case is if N < 64. This is relatively easy because we can build the value by first building
the desired value in both 64-bit lanes, and then finishing with a big pslldg or psrldg to
clear the lane we don’t like.

: set the bottom N bits, where N < 64

pcmpeqd xmm@, xmm@ ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
unsigned shift right unsigned shift right
64 - N bits 64 - N bits

psrlg xmm@, 64 - N ;0000 0000 OFFF FFFF 0000 0000 OFFF FFFF

unsigned shift right 64 bits

psrldg xmmo, 8 p 0000 0000 0000 0000 0000 0000 OFFF FFFF

; set the top N bits, where N < 64

1/4

https://devblogs.microsoft.com/oldnewthing/20150105-00/?p=43223
http://blogs.msdn.com/b/oldnewthing/archive/2014/12/15/10580665.aspx

pcmpeqd xmm@, Xxmm@ ; FFFF FFFF FFFF

FEFFFE

FEFFFE

FFFE FEFEF

FEFFFE

unsigned shift left

unsigned shift left

64 — N bits 64 — N bits
psllq xmm@, 64 - N ; FFFF FFFO 0000 0000 FFFF FFFO 0000 0000
unsigned shift left 64 bits
pslldg xmmO, 8 ; FFFF FFFO 0000 0000 0000 0000 0000 0000

If N > 80, then we shift in zeroes into the top and bottom half, but then use a shuffle to patch

up the half that needs to stay all-ones.

; set the bottom N bits, where N = 80

pcmpeqd xmmO, XmmoO ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
unsigned shift right unsigned shift right
128 - N bits 128 - N bits
psrlqg xmmo, 128 - N ; 0000 0000 OFFF FFFF 0000 0000 OFFF FFFF
copy shuffle !
! ! ! ! !
pshuflw xmmO, ; 0000 0000 OFFF FFFF FFFF FFFF FFFF FFFF
_MM_SHUFFLE(®, 0, 0,
0)
; set the top N bits, where N = 80
pcmpeqd xmmO, XmmoO ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
unsigned shift left unsigned shift left
128 - N bits 128 - N bits
psllg xmm@, 128 - N ; FFFF FFFO 0000 0000 FFFF FFFO 0000 0000

2/4

! shuffle copy

! ! ! ! !
pshufhw xmmo, ; FFFF FFFF FFFF FFFF FFFF FFFO 0000 0000
_MM_SHUFFLE(3, 3, 3,
3)

We have N > 80, which means that 128 — N < 48, which means that there are at least 16 bits
of ones left in low-order bits after we shift right. We then use a 4x16-bit shuffle to copy those
known-all-ones 16 bits into the other lanes of the lower half. (A similar argument applies to

setting the top bits.)

This leaves 64 < N < 80. That uses a different trick:

;. set the bottom N bits, where N < 120

pcmpeqd xmm@, xmmO ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
unsigned shift right 8 bits

psrldq xmm@, 1 7 0O0OFF FFFF FFFF FFFF FFFEF FFFF FFFF FFFF
signed shift right signed shift right
120 - N bits 120 - N bits

psrad xmm@, 120 - N ; 0000 OOFF FFFF FFFF FFFF FFFF FFFF FFFF

The sneaky trick here is that we use a signed shift in order to preserve the bottom half.
Unfortunately, there is no corresponding left shift that shifts in ones, so the best I can come

up with is four instructions:

; set the top N bits, where 64 < N < 96

pcmpeqd xmm@, XxXmmoO ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
unsigned shift left unsigned shift left
96 - N bits 96 - N bits

psllq xmmo, 96 - N ; FFFF FFFF FFFO 0000 FFFF FFFF FFFO 0000

3/4

shuffle

l l l

pshufd xmmo,
_MM_SHUFFLE(3, 3, 1, 0)

FFFF FFFF FFFF FFFF FFFF FFFEF FFEFO 0000

unsigned shift left 32 bits

pslldg xmmO, 4

FFFF FFFF FFFF FFFF FFFF FFOO 0000 0000

We view the 128-bit register as four 32-bit lanes. split the shift into two steps. First, we fill
Lane o with the value we ultimately want in Lane 1, then we patch up the damage we did to
Lane 2, then we do a shift the 128-bit value left 32 places to slide the value into position and

zero-fill Lane o.

Note that a lot of the ranges of N overlap, so you often have a choice of solutions. There are

other three-instruction solutions I didn’t bother presenting here. The only one I couldn’t find

a three-instruction solution for was setting the top N bits where 64 < N < 80.

If you find a three-instruction solution for this last case, share it in the comments.

&ond Chen

Follow

4/4

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

