
1/4

January 5, 2015

More notes on calculating constants in SSE registers
devblogs.microsoft.com/oldnewthing/20150105-00

Raymond Chen

A few weeks ago I noted some tricks for creating special bit patterns in all lanes, but I forgot

to cover the case where you treat the 128-bit register as one giant lane: Setting all of the least

significant N bits or all of the most significant N bits.

This is a variation of the trick for setting a bit pattern in all lanes, but the catch is that the

pslldq instruction shifts by bytes, not bits.

We’ll assume that N is not a multiple of eight, because if it were a multiple of eight, then the

pslldq or psrldq instruction does the trick (after using pcmpeqd to fill the register with

ones).

One case is if N ≤ 64. This is relatively easy because we can build the value by first building

the desired value in both 64-bit lanes, and then finishing with a big pslldq or psrldq to

clear the lane we don’t like.

; set the bottom N bits, where N ≤ 64

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift right
 64 − N bits

unsigned shift right
 64 − N bits

psrlq xmm0, 64 - N ; 0000 0000 0FFF FFFF 0000 0000 0FFF FFFF

unsigned shift right 64 bits

psrldq xmm0, 8 ; 0000 0000 0000 0000 0000 0000 0FFF FFFF

; set the top N bits, where N ≤ 64

https://devblogs.microsoft.com/oldnewthing/20150105-00/?p=43223
http://blogs.msdn.com/b/oldnewthing/archive/2014/12/15/10580665.aspx

2/4

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift left
 64 − N bits

unsigned shift left
 64 − N bits

psllq xmm0, 64 - N ; FFFF FFF0 0000 0000 FFFF FFF0 0000 0000

unsigned shift left 64 bits

pslldq xmm0, 8 ; FFFF FFF0 0000 0000 0000 0000 0000 0000

If N ≥ 80, then we shift in zeroes into the top and bottom half, but then use a shuffle to patch

up the half that needs to stay all-ones.

; set the bottom N bits, where N ≥ 80

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift right
 128 − N bits

unsigned shift right
 128 − N bits

psrlq xmm0, 128 - N ; 0000 0000 0FFF FFFF 0000 0000 0FFF FFFF

copy shuffle ↓

↓ ↓ ↓ ↓ ↓

pshuflw xmm0,
_MM_SHUFFLE(0, 0, 0,
0)

; 0000 0000 0FFF FFFF FFFF FFFF FFFF FFFF

; set the top N bits, where N ≥ 80

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift left
 128 − N bits

unsigned shift left
 128 − N bits

psllq xmm0, 128 - N ; FFFF FFF0 0000 0000 FFFF FFF0 0000 0000

3/4

↓ shuffle copy

↓ ↓ ↓ ↓ ↓

pshufhw xmm0,
_MM_SHUFFLE(3, 3, 3,
3)

; FFFF FFFF FFFF FFFF FFFF FFF0 0000 0000

We have N ≥ 80, which means that 128 – N ≤ 48, which means that there are at least 16 bits

of ones left in low-order bits after we shift right. We then use a 4×16-bit shuffle to copy those

known-all-ones 16 bits into the other lanes of the lower half. (A similar argument applies to

setting the top bits.)

This leaves 64 < N < 80. That uses a different trick:

; set the bottom N bits, where N ≤ 120

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift right 8 bits

psrldq xmm0, 1 ; 00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

signed shift right
 120 − N bits

signed shift right
 120 − N bits

psrad xmm0, 120 - N ; 0000 00FF FFFF FFFF FFFF FFFF FFFF FFFF

The sneaky trick here is that we use a signed shift in order to preserve the bottom half.

Unfortunately, there is no corresponding left shift that shifts in ones, so the best I can come

up with is four instructions:

; set the top N bits, where 64 ≤ N ≤ 96

pcmpeqd xmm0, xmm0 ; FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

unsigned shift left
 96 − N bits

unsigned shift left
 96 − N bits

psllq xmm0, 96 - N ; FFFF FFFF FFF0 0000 FFFF FFFF FFF0 0000

4/4

shuffle

↓ ↓ ↓

pshufd xmm0,
_MM_SHUFFLE(3, 3, 1, 0)

; FFFF FFFF FFFF FFFF FFFF FFFF FFF0 0000

unsigned shift left 32 bits

pslldq xmm0, 4 ; FFFF FFFF FFFF FFFF FFFF FF00 0000 0000

We view the 128-bit register as four 32-bit lanes. split the shift into two steps. First, we fill

Lane 0 with the value we ultimately want in Lane 1, then we patch up the damage we did to

Lane 2, then we do a shift the 128-bit value left 32 places to slide the value into position and

zero-fill Lane 0.

Note that a lot of the ranges of N overlap, so you often have a choice of solutions. There are

other three-instruction solutions I didn’t bother presenting here. The only one I couldn’t find

a three-instruction solution for was setting the top N bits where 64 < N < 80.

If you find a three-instruction solution for this last case, share it in the comments.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

