
1/2

January 14, 2015

Where can I find the standard asynchronous stream?
devblogs.microsoft.com/oldnewthing/20150114-00

Raymond Chen

In the documentation for XmlLite, one of the features called out is that XmlLite is a non-

blocking parser. If the input stream returns E_PENDING , then XmlLite propagates that

status to its caller, and a subsequent request to XmlLite to parse will resume where it left off.

That documentation calls out two scenarios in which this can happen, the second of which is

2. The input Stream is a standard asynchronous stream. The E_PENDING HRESULT may be
raised when the data is temporarily unavailable on the network. In this case, you need to try
again later in a callback or after some interval of time.

A customer was kind of confused by this explanation. “Where do I get a standard

asynchronous stream so I can use it in scenario 2?”

The documentation here is trying to be helpful by expanding on the original statement that

XmlLite is a non-blocking parser and providing examples of how you can take advantage of

this non-blocking behavior. The normative statement is the one that says, “XmlLite

propagates the E_PENDING from the input stream to its caller, and a subsequent request to

read data from the XmlLite parser will resume where it left off.” The rest is informational,

but it seems that the informational text was more confusing than helpful.

The informational text is trying to say, “Here are some examples where you can take

advantage of this behavior.” The first scenario is an example where you provided an IStream

that returns E_PENDING when it wants to force the XmlLite parser to stop parsing. You

might do this, for example, if you have out-of-band data in your XML stream. The stream

would return E_PENDING when it encounters the out-of-band data, and this causes the

XmlLite parser to stop parsing and return E_PENDING . You can then process the out-of-

band data, and then when you are ready to resume parsing, you reissue the call that returned

E_PENDING so the parser can resume where it left off.

The second scenario is an example where you provided an IStream that returns E_PENDING

to indicate that there is more data in the stream, but it is not available right now. For

example, the stream may be the result of a streaming download, and the next chunk of the

download hasn’t arrived yet. Instead of blocking the read, the stream returns E_PENDING to

https://devblogs.microsoft.com/oldnewthing/20150114-00/?p=43153
http://msdn.microsoft.com/en-us/library/windows/desktop/ms753140(v=vs.85).aspx

2/2

say, “There is more data, but I can’t provide it right now. Go do something else for a while.”

The download stream presumably has some way of notifying when the next download chunk

is ready. Your program can subscribe to that notification, and when it is received, you can

resume parsing with XmlLite.

The adjective “standard” here in the phrase “a standard asynchronous stream” does not refer

to a specific reference implementation. It’s using the word “standard” in the sense of

“regularly and widely used, seen, or accepted; not unusual or special.” (This was subtly

implied by the use of the indefinite rather than the definite article, but that use of the

indefinite could be interpreted to mean “an instance of the standard asynchronous stream”.)

In other words, the opening sentence is saying, “The input Stream is any asynchronous

stream that behaves in the usual manner.”

By analogy, consider the sentence “This service is available from a standard touch-tone

phone.” This doesn’t mean “There is a specific model of touch-tone phone that is the

standard touch-tone phone, and you must use that one.” It’s just saying “Any touch-tone

phone (that conforms to the standard) will work.”

Raymond Chen

Follow

http://www.merriam-webster.com/dictionary/standard
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

