
1/4

January 16, 2015

Why does a single integer assignment statement
consume all of my CPU?

devblogs.microsoft.com/oldnewthing/20150116-00

Raymond Chen

Here’s a C++ class inspired by actual events. (Yes, the certificate on that Web site is broken.)

It is somebody’s attempt to create a generic value type, similar to VARIANT .

https://devblogs.microsoft.com/oldnewthing/20150116-00/?p=43133
https://database.cs.brown.edu/svn/hstore/tags/release-2011-03/src/ee/common/NValue.hpp

2/4

class Value

{

public:

Value(Type type) : m_type(V_UNDEFINED) { }

Type GetType() const { return m_type; }

void SetType(Type type) { m_type = type; }

int32_t GetInt32() const

{
 assert(GetType() == V_INT32);

 return *reinterpret_cast<const int32_t *>(m_data);

}

void SetInt32(int32_t value)

{
 assert(GetType() == V_INT32);

 *reinterpret_cast<int32_t *>(m_data) = value;

}

// GetChar, SetChar, GetInt64, SetInt64, etc.

private:

char m_data[sizeof(int64_t)];

char m_type;

};

...

Value CalculateTheValue()

{

int32_t total;

// ... a bunch of computation ...

Value result;

result.SetType(V_INT32);

result.SetInt32(total);

return result;

}

Profiling showed that over 80% of the time spent by CalculateTheValue was inside the

SetInt32 method call, in particular on the line

 *reinterpret_cast<int32_t *>(m_data) = value;

Why does it take so much time to store an integer to memory, dwarfing the actual

computation to calculate that integer?

Alignment.

3/4

Observe that the underlying data for the Value class is declared as a bunch of char s.

Since a char is just a byte, it has no alignment restrictions. On the other hand, data types

like int32_t typically do have alignment restrictions. For example, accessing a 32-bit value

is usually more efficient if the value is stored in memory starting at a multiple of 4.

How much more efficient depends on the processor and the data type.

Of the processors that allow unaligned memory access, the penalty can be zero, or only 10%

or maybe 100%.

Many processor architectures are less forgiving of misaligned data access and raise an

alignment exception if you break the rules. When such an exception occurs, the operating

system might choose to terminate the application. Or the operating system may choose to

emulate the instruction and fix up the misaligned access. The program runs much slower, but

at least it still runs. (In Windows, the decision how to respond to the alignment exception

depends on whether the process asked for alignment faults to be forgiven. See SEM_NO‐

ALIGNMENTFAULTEXCEPT .)

It appears that the original program is in the last case: An alignment exception occurred, and

the operating system handled it by manually reading the four bytes from m_data[0]

through m_data[4] and assembling them into a 32-bit value, then resuming execution of

the original program.

Dispatching the exception, parsing out the faulting instruction, emulating it, then resuming

execution. That is all very slow. Probably several thousand instruction cycles. This can easily

dwarf the actual computation performed by CalculateTheValue .

Okay, but why is the result variable unaligned?

Since, as we noted a while back, the way the Value class is defined requires only byte

alignment, the compiler is not constrained to align it in any particular way. If there were a

int16_t local variable in the CalculateTheValue function, the compiler might choose to

arrange its stack frame like this:

Start at an aligned address X.

Put int32_t total at X+0 through X+3.

Put int16_t whatever at X+4 through X+5.

Put Value result at X+6 through X+22.

Since X is a multiple of 4, X+6 is not a multiple of 4, so the m_data member is misaligned

and incurs an alignment fault at every access.

What’s more, since the Value class has an odd number of total bytes, if you create an array

of Value s, you are guaranteed that three quarters of the elements will be misaligned.

http://www.agner.org/optimize/blog/read.php?i=142&v=t
http://lemire.me/blog/archives/2012/05/31/data-alignment-for-speed-myth-or-reality/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0290g/Chddeedh.html

4/4

The solution is to fix the declaration of the Value class so that the alignment requirements

are made visible to the compiler. Instead of jamming all the data into a byte blob, use a

discriminated union. That is, after all, what you are trying to emulate in the first place.

class Value

{

public:

Value(Type type) : m_type(V_UNDEFINED) { }

Type GetType() const { return m_type; }

void SetType(Type type) { m_type = type; }

int32_t GetInt32() const

{
 assert(GetType() == V_INT32);

 return m_data.m_int32;

}

void SetInt32(int32_t value)

{
 assert(GetType() == V_INT32);

 m_data.m_int32 = value;

}

// GetChar, SetChar, GetInt64, SetInt64, etc.

private:

union

{
 char m_char;

 int32_t m_int32;

 int64_t m_int64;

 // etc.

} m_data;

char m_type;

};

Exercise: One guess as to the cause of the problem is that the assignment statement is

incurring paging. Explain why this is almost certainly not the reason.

Bonus chatter: I’m ignoring RVO here. If you are smart enough to understand RVO, you

should also be smart enough to see that RVO does not affect the underlying analysis. It just

shifts the address calculation to the caller.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

