
1/4

January 21, 2015

Why does my synchronous overlapped ReadFile return
FALSE when the end of the file is reached?

devblogs.microsoft.com/oldnewthing/20150121-00

Raymond Chen

A customer reported that the behavior of Read File was not what they were expecting.

We have a synchronous file handle (not created with FILE_FLAG_OVERLAPPED), but we
issue reads against it with an OVERLAPPED structure. We find that when we read past the end
of the file, the Read File returns FALSE even though the documentation says it should
return TRUE .

They were kind enough to include a simple program that demonstrates the problem.

#include <windows.h>

int __cdecl wmain(int, wchar_t **)
{
// Create a zero-length file. This succeeds.
HANDLE h = CreateFileW(L"test", GENERIC_READ | GENERIC_WRITE,
 0, nullptr, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, nullptr);

// Read past EOF.
char buffer[10];
DWORD cb;
OVERLAPPED o = { 0 };
ReadFile(h, buffer, 10, &cb, &o); // returns FALSE
GetLastError(); // returns ERROR_HANDLE_EOF

return 0;
}

The customer quoted this section from The documentation for Read File:

https://devblogs.microsoft.com/oldnewthing/20150121-00/?p=44863
http://blogs.msdn.com/b/oldnewthing/archive/2013/10/18/10457796.aspx
http://msdn.microsoft.com/library/aa365467

2/4

Considerations for working with synchronous file handles:

If lpOverlapped is NULL, the read operation starts at the current file position and Read -
File does not return until the oepration is complete, and the system updates the file
pointer before Read File returns.
If lpOverlapped is not NULL, the read operation starts at the offset that is specified in the
OVERLAPPED structure and Read File does not return until the read operation is
complete. The system updates the OVERLAPPED offset before Read File returns.
When a synchronous read operation reads the end of a file, Read File returns TRUE and
sets *lpNumberOfBytesRead to zero.

and then added

According to the third bullet point, the Read File should return TRUE , but in practice it
returns FALSE and the error code is ERROR_HANDLE_EOF .

The problem here is that there are two concepts here, and they confusingly both use the word

synchronous.

A synchronous file handle is a handle opened without FILE_FLAG_OVERLAPPED . All

I/O to a synchronous file handle is serialized and synchronous.

A synchronous I/O operation is an I/O issued with lpOverlapped == NULL .

The sample program issues an asynchronous read against a synchronous handle. The third

bullet point applies only to synchronous reads.

To reduce confusion, the documentation would have been clearer if it hadn’t switched

terminology midstream.

If lpOverlapped is NULL, the read operation starts at the current file position and Read -
File does not return until the oepration is complete, and the system updates the file
pointer before Read File returns.
If lpOverlapped is not NULL, the read operation starts at the offset that is specified in the
OVERLAPPED structure and Read File does not return until the read operation is
complete. The system updates the OVERLAPPED offset before Read File returns.
If lpOverlapped is NULL and the read operation reads the end of a file, Read File returns
TRUE and sets *lpNumberOfBytesRead to zero.

We asked what the customer was doing that caused them to trip over this confusion in the

documentation.

3/4

The customer’s original code opened a file (synchronously) and read from it (synchronously).
The customer is parallelizing the computation in a way that will read that single file from
multiple threads. A single file pointer is therefore not suitable, because different threads will
want to read from different positions.

One idea would be to have each thread call Create File so that each handle has its own file
position. Unfortunately, this won’t work for the customer because the sharing mode on the file
handle denies read sharing.

The solution they came up with was to open the file synchronously (without
FILE_FLAG_OVERLAPPED) but to read asynchronously (by using an OVERLAPPED

structure). The OVERLAPPED structure lets you specify where you want to read from, so
multiple threads can issue reads against the file position they want.

This solution works, but the customer is concerned because this hybrid model is not well-
documented in MSDN. They found a blog entry that discusses it, but even that blog entry does
not discuss what happens in the multithreaded case.) In particular, they are seeing that the end-
of-file behavior acts according to asynchronous rather than synchronous rules.

Any advice you have on how we can pursue this model would be appreciated. Another concern
is that since we do not set the hEvent in the OVERLAPPED structure, the file handle itself is
used as the signal that I/O has completed, and this will cause problems if multiple I/O’s are
active simultaneously.

The problem is that the customer confused the two senses of synchronous, one when applied

to files and one when applied to I/O operations. Since they opened a synchronous file handle,

all I/O operations are serialized and execute synchronously. Passing an OVERLAPPED

structure issues an asynchronous I/O, but since the underlying handle is synchronous, the

I/O is serialized and synchronous. The customer’s code therefore is not actually performing

I/O asynchronously; its requests for asynchronous I/O is overridden by the fact that the

underlying handle is synchronous.

The hybrid model doesn’t actually realize any gains of asynchronous I/O. The use of the

OVERLAPPED structure merely provides the convenience of combining the seek and read

operations into a single call. Since the benefit is rather meager, the hybrid model is not

commonly used, and consequently it is not covered in depth in the documentation. (The facts

are still there, but there is relatively little discussion and elaboration.)

Based on this feedback, the customer considered switching to using an asynchronous file

handle and setting the hEvent in the OVERLAPPED structure so that each thread can wait

for its specific I/O to complete. In the end, however, they decided to stick with the hybrid

model because switching to an asynchronous handle was too disruptive to their code base.

They are satisfied with the OVERLAPPED technique that lets them perform the equivalent of

an atomic Set File Pointer + Read File (even if the I/O is synchronous and serialized).

http://blogs.msdn.com/b/oldnewthing/archive/2012/04/05/10290954.aspx

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

