
1/6

February 12, 2015

Who is this rogue operative that filled my object with
0xDD, then sent me a message?

devblogs.microsoft.com/oldnewthing/20150212-00

Raymond Chen

A failure occurred during stress testing, and the component team came to the conclusion that

their component was actually the victim of memory corruption and they asked for help trying

to see if there was anything still in memory that would give a clue who did the corrupting.

/* static */ LRESULT CALLBACK CContoso::WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 CContoso *pThis = reinterpret_cast<CContoso *>

 (GetWindowLongPtr(hwnd, GWLP_USERDATA));

 ...

 pThis->... // crash on first dereference of pThis

According to the debugger, the value of pThis is a valid pointer to memory that is complete

nonsense.

0: kd> dv

 hwnd = 0xf0040162

 uMsg = 0x219

 ...

 pThis = 0x10938bf0

 ...

0: kd> dt pThis

Type CContoso*

 +0x000 __VFN_table : 0xdddddddd

 +0x004 m_cRef : 0n-572662307

 +0x008 m_hwnd : 0xdddddddd HWND__

 ...

The CContoso object was filled with the byte 0xDD . Who would do such a thing?

There are a few clues so far, and if you’re psychic, you may have picked up on their aura.

But I had a suspicion what happened, so I dug straight into the code to check my theory.

https://devblogs.microsoft.com/oldnewthing/20150212-00/?p=44693
http://blogs.msdn.com/b/oldnewthing/archive/2014/02/03/10496248.aspx

2/6

BOOL CContoso::StartStuffInBackground()

{

AddRef(); // DoBackgroundWork will release the reference

BOOL fSuccess = QueueUserWorkItem(&CContoso::DoBackgroundWork, this, 0);

if (!fSuccess) Release();

return fSuccess;

}

/* static */ DWORD CALLBACK CContoso::DoBackgroundWork(void *lpParameter)

{

CContoso *pThis = static_cast<CContoso *>(lpParameter);

pThis->DoThis();

pThis->DoThat();

pThis->Release();

return 0;

}

So far, we have a standard pattern. An extra reference to the object is kept alive as long as the

background thread is still running. This prevents the object from being destroyed

prematurely.

(Note that this object is not necessarily a COM object. It could be a plain object that happens

to have chosen the names AddRef and Release for the methods that manipulate the

reference count.)

What people often forget to consider is that this means that the final release of the

CContoso object can occur on the background thread. I mean, this is obvious in one sense,

because they are adding the extra reference specifically to handle the case where we want to

delay object destruction until the background thread completes. But what happens if that

scenario actually comes to pass?

CContoso::~CContoso()

{

if (m_hwnd != nullptr) DestroyWindow(m_hwnd);

...

}

As part of the destruction of the CContoso object, it destroys its window. But Destroy‐

Window must be called on the same thread which created the window: “A thread cannot use

DestroyWindow to destroy a window created by a different thread.”

This means that if the final release of the CContoso object comes from the background

thread, the destructor will run on the background thread, and the destructor will try to

destroy the window, but the call will fail because it is on the wrong thread.

The result is that the object is destroyed, but the window still hangs around, and the window

has a (now dangling) pointer to the object that no longer exists.

http://msdn.microsoft.com/library/ms632682

3/6

Since the window in question was a hidden helper window, the program managed to survive

like this for quite some time: Since the program thought the window was destroyed, there

was no code that tried to send it a message, and the normal system-generated messages were

not anything the object cared about, so they all fell through to DefWindowProc and nobody

got hurt. But eventually, some other stress test running on the machine happened

coincidentally to broadcast the WM_SETTINGCHANGE message 0x0219 , and when the object

tried to check what settings changed, that’s when it crashed. (That was one of the clues I

hinted at above: The message that triggered the crash is 0x0219 . This is a good number to

memorize if you spend time studying stress failures because it is often the trigger for crashes

like this where a window has been orphaned by its underlying object.)

The root cause is that the object was treated as a free-threaded object even though it actually

had thread affinity.

One way to fix this is to isolate the parts with thread affinity so that they are used only on the

UI thread. The one we identified is the destructor due to its use of DestroyWindow . So at a

minimum, we could marshal destruction to the UI thread.

LONG CContoso::Release()

{

LONG cRef = InterlockedDecrement(&this->m_cRef);

if (cRef == 0)

{
 if (m_hwnd == nullptr) {

 delete this;

 } else {

 PostMessage(m_hwnd, CWM_DESTROYTHIS, 0, 0);

 }

}
return cRef;

}

/* static */ LRESULT CALLBACK CContoso::WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 CContoso *pThis = reinterpret_cast<CContoso *>

 (GetWindowLongPtr(hwnd, GWLP_USERDATA));

 ...

 case CWM_DESTROYTHIS:

 delete pThis;

 return 0;

 ...

(The original code had better have been using an interlocked operation on Release because

it was releasing from a background thread already.)

4/6

If the final Release happens before we have a window, then we just destruct in-place, on

the theory that if no window is created, then we are being destroyed due to failed

initialization and are still on the original thread. Otherwise, we post a message to the window

to ask it to destroy the object.

Note that this design does have its own caveats:

Even if the final Release happens on the UI thread, we still post a message, even

though we could have destroyed it inline.

Posting a message assumes that the message pump will continue to run after the object

is released. If somebody releases the object and then immediately exits the thread, the

posted message will never arrive and the object will be leaked.

Posting a message makes destruction asynchronous. There may be some assumptions

that destruction is synchronous with the final release.

As for the first problem, we could do a thread check and destruct in-place if we are on the UI

thread. This would most likely solve the second problem because the exiting thread is not the

one that will process the message. It will still be a problem if the background thread does

something like

 Release();

 DoSomethingThatCausesTheUIThreadToExitImmediately();

For the second problem, we could change the PostMessage to a SendMessage , but this

creates its own problems because of the risk of deadlock. If the UI thread is blocked waiting

for the background thread, and the background thread tries to send the UI thread a message,

the two threads end up waiting for each other and nobody makes any progress. On the other

hand, making the destruction synchronous would fix the third problem.

Another approach is to push the affinity out one more step:

5/6

/* static */ DWORD CALLBACK CContoso::DoBackgroundWork(void *lpParameter)

{

CContoso *pThis = static_cast<CContoso *>(lpParameter);

pThis->DoThis();

pThis->DoThat();

pThis->AsyncRelease();

return 0;

}

void CContoso::AsyncRelease()

{

PostMessage(m_hwnd, CWM_RELEASE, 0, 0);

}

/* static */ LRESULT CALLBACK CContoso::WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 CContoso *pThis = reinterpret_cast<CContoso *>

 (GetWindowLongPtr(hwnd, GWLP_USERDATA));

 ...

 case CWM_RELEASE:

 pThis->Release();

 return 0;

 ...

In this design, we make the asynchronicity explicit in the name of the function, and we

require all background threads to use the asynchronous version. This design again assumes

that the only reason the window wouldn’t exist is that something went wrong during

initialization before any background tasks were created.

Unfortunately, this design also retains the original constraint that Release can be called

only from the UI thread. That makes the object rather fragile, because it is not obvious that

Release has such constraints. If you go this route, you probably should rename Release

to ReleaseFromUIThread .

If this object is a COM object, then another option is to use COM marshaling to marshal the

IUnknown to the background thread and use IUnknown::Release to release the object.

Since you used COM to marshal the object, it knows that CoUninitialize should wait for

all outstanding references marshaled to other threads, thereby avoiding the “lost message”

problem.

Anyway, those are a few ideas for addressing this problem. None of them are particularly

beautiful, though. Maybe you can come up with something better.

(The component team fixed this problem by taking advantage of a detail in the usage pattern

of the CContoso object: The client of the CContoso object is expected to call

CContoso::Stop before destroying the object, and after calling CContoso::Stop , the

6/6

only valid thing you can do with the object is destroy it. Furthermore, that call to

CContoso::Stop must occur on the UI thread. Therefore, they moved the part of the

cleanup code that must run on the UI thread into the Stop method. The object’s

background tasks already knew to abandon work once they detected that the object had been

stopped.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

