
1/4

March 6, 2015

A question about the FileTimeToLocalFileTime function
turned out to be something else

devblogs.microsoft.com/oldnewthing/20150306-00

Raymond Chen

A customer reported that their program was running into problems with the FileTimeTo‐

LocalFileTime function. Specifically, they found that the values reported by the function

varied wildly for different time zones. Even though the two time zones were only a few hours

apart, the results were hundreds of centuries apart.

The customer did a very good job of reducing the problem, providing a very simple program

that illustrated the problem. I cleaned it up a bit.

https://devblogs.microsoft.com/oldnewthing/20150306-00/?p=44523
http://blogs.msdn.com/b/oldnewthing/archive/2013/10/18/10457796.aspx

2/4

#include <windows.h>

#include <stdio.h>

int main(int argc, char **argv)

{

FILETIME ftUTC = { 0, 0 };

FILETIME ftLocal;

SYSTEMTIME stLocal;

double vLocal = 0;

BOOL result = 0;

printf("ftUTC = {%d,%d}\n",

 ftUTC.dwHighDateTime, ftUTC.dwLowDateTime);

result = FileTimeToLocalFileTime(&ftUTC, &ftLocal);

printf("FT2LFT returns %d\n", result);

printf("ftLocal = {%d,%d}\n",

 ftLocal.dwHighDateTime, ftLocal.dwLowDateTime);

FileTimeToSystemTime(&ftLocal, &stLocal);

printf("stLocal = %d.%d.%d %02d:%02d:%02d\n",

 stLocal.wYear, stLocal.wMonth, stLocal.wDay,

 stLocal.wHour, stLocal.wMinute, stLocal.wSecond);

SystemTimeToVariantTime(&stLocal, &vLocal);

printf("vLocal = %f\n", vLocal);

return 0;

}

According to the customer, “When we run the program with the current time zone set to

UTC-8, we get the correct values, but if we run it with the time zone set to UTC+8, we get the

wrong values. We expect that a zero starting file time should result in a zero variant time.”

They also provided two screen shots, which I converted to a table.

UTC+8 UTC-8

ftUTC = {0,0}

FT2LFT returns 1

ftLocal = {67,237191168}

stLocal = 1601.1.1 08:00:00

vLocal = -109205.000000

ftUTC = {0,0}

FT2LFT returns 1

ftLocal = {-68,-237191168}

stLocal = 34453.15281.0 00:30:19624

vLocal = 0.000000

Incorrect Correct

Okay, first of all, let’s see which is actually correct and which is incorrect.

3/4

The FileTimeToLocalFileTime function subtracts or adds eight hours. Since the starting

time was zero, the result in the case of UTC-8 is an integer underflow, which prints as

negative numbers if you use the %d format. (Note to language lawyers: Don’t get all worked

up about stuff like “passing an unsigned integer to the %d format results in undefined

behavior.” I’m talking about Win32 here, and I’m trying to explain observed behavior, not

justify theoretical behavior.)

The value {67,237191168} corresponds to 0x00000043`0e234000 , which has the signed

decimal value 288000000000 which is exactly equal to 8 * 10000 * 1000 * 3600 , or

eight hours after zero. On the other hand, the value {-68,-237191168} corresponds to

0xffffffbc`f1dcc000 which has the signed decimal value -288000000000 which is

exactly equal to -8 * 10000 * 1000 * 3600 , or eight hours before zero.

So far, the numbers match what we expect. Although we do have an issue that in the UTC-8

case, the value underflowed to a very large positive number.

Next, we convert ftLocal to stLocal . The easy case is UTC+8, where the timestamp of

eight hours after zero is converted to January 1, 1601 at 8am, because the zero time for

FILETIME is January 1, 1601 at midnight. This is spelled out in the very first sentence of the

documentation for the FILETIME structure.

Okay, now the hard case of UTC-8. The timestamp 0xffffffbc`f1dcc000 , if interpreted as

an unsigned number, corresponds to May 27, 58456 (at around 9:30pm), but if interpreted

as a signed number, corresponds to 4pm December 31, 1600. The FileTimeToSystemTime

function rejects negative timestamps, return FALSE and ERROR_INVALID_PARAMETER .

Since the call failed, the value in stLocal is undefined, and here, it just contains

uninitialized garbage. (Because “uninitialized garbage” is a valid value for “undefined”.)

The next thing we do is convert the stLocal to a variant time. As noted in the

documentation, the zero time for variant time is December 30, 1899. (Required reading:

Eric’s Complete Guide to VT_DATE, wherein the insanities of variant time are investigated.)

Again, the case of UTC+8 is easy: January 1, 1601 is many many days before December 30,

1899, apparently −109205 days. I’m going to take this for granted and not check the math,

because the goal is not to double-check the results but rather to explain why the results are

what they are. On the other hand, the (garbage) date of the zeroth day of the 15281th month

of the year 34453 is not valid, and the SystemTimeToVariantTime fails because the

parameter is invalid. In this case, the output variable vLocal is left unchanged, and it

continues to have the value zero, the value it was initialized with.

Therefore, the fact that in the so-called “correct” case the value of vLocal is zero has

nothing to do with the functioning of the API, but rather has everything to do with the line

double vLocal = 0;

http://blogs.msdn.com/b/oldnewthing/archive/2009/03/06/9461176.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms221646(v=VS.85).aspx
http://blogs.msdn.com/b/ericlippert/archive/2003/09/16/eric-s-complete-guide-to-vt-date.aspx

4/4

at the start of the program. Change the line to

double vLocal = 3.14159;

and the result in the “correct” case will be 3.14159.

The conclusion here is that the so-called “incorrect” result is actually correct, and the so-

called “correct” result is just an accident. The customer is under the mistaken impression

that a zero FILETIME matches a zero variant time, but they do not. The zero points for the

two time formats are quite different. The problem was exacerbated by the fact that the test

program didn’t check the return values of FileTimeToSystemTime or SystemTimeTo‐

VariantTime , so what it thought were the values set by those two functions were actually

just the uninitialized values passed into the respective functions.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

