
1/2

March 13, 2015

Debugging walkthrough: Access violation on nonsense
instruction, episode 2

devblogs.microsoft.com/oldnewthing/20150313-00

Raymond Chen

A colleague of mine asked for help debugging a strange failure. Execution halted on what

appeared to be a nonsense instruction.

eax=0079f850 ebx=00000000 ecx=00000113 edx=00000030 esi=33ee06ef edi=74b9b8ad
eip=00c0ac74 esp=0079f82c ebp=0079f86c iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246
00c0ac74 0000 add byte ptr [eax],al ds:002b:0079f850=74

If you’ve been debugging x86 code for a while, you immediately recognize this instruction as

“executing a page of zeroes”. If you haven’t been debugging x86 code for a while, you can see

this from the code bytes in the second column.

So how did we end up at this nonsense instruction?

The instruction is not near a page boundary, so we didn’t fall through to it. We must have

jumped to it or returned to it.

Since debugging is an exercise in optimism, let’s assume that we jumped to it via a call

instruction, and the return address is still on the stack.

0:000> dps esp l2
0079f82c 74b9b8b1 user32!GetMessageW+0x4
0079f830 008f108b CONTOSO!MessageLoop+0xe7
0:000> u user32!GetMessageW l3
USER32!GetMessageW:
74b9b8ad cc int 3
74b9b8ae ff558b call dword ptr [ebp-75h]
74b9b8b1 ec in al,dx

Well, that explains it. The code bytes for the Get MessageW function were overwritten,

causing us to execute garbage, and one of the garbage instructions was a call that took us

to page of zeroes.

But look more closely at the overwritten bytes.

https://devblogs.microsoft.com/oldnewthing/20150313-00/?p=44473

2/2

The first byte is cc , which is a breakpoint instruction. Hm…

Since Windows functions begin with a MOV EDI, EDI instruction for hot patching purposes,

the first two bytes are always 8b ff . If we unpatch the cc to 8b , we see that the rest of

the code bytes are intact.

USER32!GetMessageW:
74b9b8ad 8bff mov edi,edi
74b9b8af 55 push ebp
74b9b8b0 8bec mov ebp,esp

After a brief discussion, we were able to piece together what happened:

Somebody was trying to debug the CONTOSO application, so they connected a user-mode

debugger to the application. Meanwhile, they set a breakpoint on user32!GetMessageW

from the kernel debugger. Setting a breakpoint in a debugger is typically performed by

patching an int 3 at the point where you want the breakpoint. When the int 3 fires, the

debugger regains control and says, “Oh, thanks for stopping. Let me unpatch all the int 3 ‘s

I put in the program to put things back the way they were.”

When the breakpoint hit, it was caught by the user-mode debugger, but since the user-mode

debugger didn’t set that breakpoint, it interpreted the int 3 as a hard-coded breakpoint in

the application. At this point, the developer saw a spurious breakpoint, didn’t know what it

meant, and simply resumed execution. This executed the second half of the MOV EDI, EDI

instruction as the start of a new instruction, and havoc ensued.

That developer then asked his friend what happened, and his friend asked me.

TL;DR: Be careful if you have more than one debugger active. Breakpoints set by one

debugger will not be recognized by the other. If the breakpoint instruction is caught by the

wrong debugger, things will go downhill fast unless you take corrective action. (In this case, it

would be restoring the original byte.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/09/21/10214405.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

