
1/3

March 16, 2015

Does the CLR really call CoInitializeEx on the first call to
unmanaged code, even if you don't deal with COM at all
and are just calling native code via p/invoke?

devblogs.microsoft.com/oldnewthing/20150316-00

Raymond Chen

Some time ago,
I called out
this part of the documentation
regarding
managed and

unmanaged threading:

On the first call to unmanaged code,
the runtime calls CoInitializeEx
to initialize the COM
apartment as either an MTA or an STA apartment.
You can control the type of apartment created
by setting the
System.Threading.ApartmentState property on the thread to MTA,
STA, or
Unknown.

Commenter T asks,
“Does it do this even if you don’t deal with COM at all
and call native

code through a P/Invoke?”

Well, the documentation says it does, and we can confirm with an experiment:

using System.Runtime.InteropServices;

class Program

{

public static void Main()

{
 var thread = new System.Threading.Thread(

 () => {

 System.Console.WriteLine("about to p/invoke");

 GetTickCount();

 });

 thread.Start();

 thread.Join();

}
[DllImport("kernel32.dll")]

extern static uint GetTickCount();

}

Run this program with a breakpoint on
 CoInitializeEx .

First breakpoint is hit with this stack:

https://devblogs.microsoft.com/oldnewthing/20150316-00/?p=44463
http://blogs.msdn.com/b/oldnewthing/archive/2014/08/11/10548975.aspx
http://msdn.microsoft.com/en-us/library/5s8ee185%28v=vs.71%29.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2014/08/11/10548975.aspx#10549183

2/3

rax=00007ffebc529b70 rbx=00000000007c6100 rcx=0000000000000000

rdx=0000000000000000 rsi=0000000000000001 rdi=0000000000000002

rip=00007ffebc529b70 rsp=000000000056f038 rbp=000000000056f0b0

r8=0000000000000001 r9=0000000000000000 r10=0000000000000000

r11=0000000000000037 r12=0000000000004000 r13=0000000000000001

r14=0000000000000001 r15=0000000000000001

combase!CoInitializeEx

clr!Thread::SetApartment

clr!SystemDomain::SetThreadAptState

clr!SystemDomain::ExecuteMainMethod

clr!ExecuteEXE

clr!_CorExeMainInternal

clr!CorExeMain

mscoreei!CorExeMain

MSCOREE!CorExeMain_Exported

KERNEL32!BaseThreadInitThunk

ntdll!RtlUserThreadStart

This call is initializing the main thread of the process.
The flags passed to this first call to

CoInitializeEx are 0,
which means that the default threading model of
 COINIT_MULTI‐

THREADED is used.

The next time the breakpoint hits is with this stack:

rax=00000000ffffffff rbx=00000000007d1180 rcx=0000000000000000

rdx=0000000000000000 rsi=0000000000000001 rdi=00000000007d1180

rip=00007ffebc529b70 rsp=000000001a6af9a8 rbp=000000001a6afa20

r8=000000001a6af948 r9=0000000000000000 r10=00000000007f0340

r11=00000000007f0328 r12=0000000000004000 r13=0000000000000000

r14=0000000000000000 r15=0000000000000000

combase!CoInitializeEx

clr!Thread::SetApartment

clr!Thread::DoExtraWorkForFinalizer

clr!WKS::GCHeap::FinalizerThreadWorker

clr!ManagedThreadBase_DispatchInner

clr!ManagedThreadBase_DispatchMiddle

clr!ManagedThreadBase_DispatchOuter

clr!WKS::GCHeap::FinalizerThreadStart

clr!Thread::intermediateThreadProc

KERNEL32!BaseThreadInitThunk

ntdll!RtlUserThreadStart

From the name FinalizerThreadStart ,
this is clearly the finalizer thread.¹

Next.

3/3

rax=00000000ffffffff rbx=000000000039eb20 rcx=0000000000000000

rdx=0000000000000000 rsi=0000000000000001 rdi=0000000000000000

rip=00007ffebc529b70 rsp=000000001a5af3d8 rbp=000000001a5af450

r8=0000000000000000 r9=000000001a5af3f0 r10=0000000000000000

r11=0000000000000286 r12=0000000000004000 r13=0000000000000000

r14=0000000000000000 r15=0000000000000000

combase!CoInitializeEx

clr!Thread::SetApartment

clr!Thread::PrepareApartmentAndContext

clr!Thread::HasStarted

clr!ThreadNative::KickOffThread

clr!Thread::intermediateThreadProc

KERNEL32!BaseThreadInitThunk

ntdll!RtlUserThreadStart

Okay, this looks like it’s
kicking off a new thread.
I inferred this from the presence on the

stack
of the function which is deviously named
 KickOffThread .

And the flags passed to this call to
 CoInitializeEx are 0,
which once again means that it

defaults to MTA.

There, we have confirmed experimentally that, at least in this case,
the implementation

matches the documentation.

That the implementation behaves this way is not surprising.
After all, the CLR does not have

insight into the
 GetTickCount function.
It does not know a priori whether that function

will
create any COM objects.
After all, we could have been p/invoking to
 SHGetDesktop‐

Folder , which does use COM.
Given that the CLR cannot tell whether a native function is

going
to use COM or not, it has to initialize COM just in case.

¹
Or somebody who is trying to mislead us into thinking that it is
the finalizer thread.
I tend

to discount this theory because
as a general rule, code is not intentionally written to be

impossible to understand.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/11/12/10466467.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2014/01/31/10495737.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

