
1/3

March 19, 2015

Sure, we have RegisterWindowMessage and
RegisterClipboardFormat, but where are
DeregisterWindowMessage and
DeregisterClipboardFormat?

devblogs.microsoft.com/oldnewthing/20150319-00

Raymond Chen

The RegisterWindowMessage function lets you create your own custom messages that are

globally unique. But how do you free the message format when you’re done, so that the

number can be reused for another message? (Similarly, RegisterClipboardFormat and

clipboard formats.)

You don’t. There is no DeregisterWindowMessage function or DeregisterClipboard‐

Format function. Once allocated, a registered window message and registered clipboard

format hangs around until you log off.

There is room for around 16,000 registered window messages and registered clipboard

formats, and in practice exhaustion of these pools of numbers is not an issue. Even if every

program registers 100 custom messages, you can run 160 unique programs before running

into a problem. And most people don’t even have 160 different programs installed in the first

place. (And if you do, you almost certainly don’t run all of them!) In practice, the number of

registered window messages is well under 1000.

A customer had a problem with exhaustion of registered window messages. “We are using a

component that uses the RegisterWindowMessage function to register a large number of

unique messages which are constantly changing. Since there is no way to unregister them,

the registered window message table eventually fills up and things start failing. Should we

use GlobalAddAtom and GlobalDeleteAtom instead of RegisterWindowMessage ? Or

can we use GlobalDeleteAtom to delete the message registered by RegisterWindow‐

Message ?”

No, you should not use GlobalAddAtom to create window messages. The atom that comes

back from GlobalAddAtom comes from the global atom table, which is different from the

registered window message table. The only way to get registered window messages is to call

RegisterWindowMessage . Say you call GlobalAddAtom("X") and you get atom 49443

https://devblogs.microsoft.com/oldnewthing/20150319-00/?p=44433

2/3

from the global atom table. Somebody else calls RegisterWindowMessage("Y") and they

get registered window message number 49443. You then post message 49443 to a window,

and it thinks that it is message Y, and bad things happen.

And you definitely should not use GlobalDeleteAtom in a misguided attempt to deregister

a window message. You’re going to end up deleting some unrelated atom, and things will

start going downhill.

What you need to do is fix the component so it does not register a lot of window messages

with constantly-changing names. Instead, encode the uniqueness in some other way. For

example, instead of registering a hundred messages of the form Contoso user N logged

on , just register a single Contoso user logged on message and encode the user number

in the wParam and lParam payloads. Most likely, one or the other parameter is already

being used to carry nontrivial payload information, so you can just add the user number to

that payload. (And this also means that your program won’t have to keep a huge table of

users and corresponding window messages.)

Bonus chatter: It is the case that properties added to a window via SetProp use global

atoms, as indicated by the documentation. This is an implementation detail that got exposed,

so now it’s contractual. And it was a bad idea, as I discussed earlier.

Sometimes, people try to get clever and manually manage the atoms used for storing

properties. They manually add the atom, then access the property by atom, then remove the

properties, then delete the atom. This is a high-risk maneuver because there are so many

things that can go wrong. For example, you might delete the atom prematurely (unaware that

it was still being used by some other window), then the atom gets reused, and now you have a

property conflict. Or you may have a bug that calls GlobalDeleteAtom for an atom that was

not obtained via GlobalAddAtom . (Maybe you got it via GlobalFindAtom or Enum‐

Props .)

I’ve even seen code that does this:

atom = GlobalAddAtom(name);

// Some apps are delete-happy and run around deleting atoms they shouldn't.

// If they happen to delete ours by accident, things go bad really fast.

// Prevent this from happening by bumping the atom refcount a few extra

// times so accidental deletes won't destroy it.

GlobalAddAtom(name);

GlobalAddAtom(name);

So we’ve come full circle. There is a way to delete an unused atom, but people end up deleting

them incorrectly, so this code tries to make the atom undeletable. Le Chatelier’s Principle

strikes again.

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2008/05/02/8447913.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/04/16/8398400.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

