
1/2

May 19, 2015

It rather involved being on the other side of this airtight
hatchway: Code injection via QueueUserAPC

devblogs.microsoft.com/oldnewthing/20150519-00

Raymond Chen

A security vulnerability report arrived that took the following form:

The QueueUserAPC function can be used to effect an elevation of privilege, as follows:

1. Identify a process you wish to attack.
2. Obtain access to a thread with THREAD_SET_CONTEXT access.
3. Make some educated guesses as to what DLLs are loaded in that process. Start with

kernel32.dll , since you’re going to need it in step 5.
4. From the attacking process, scan the memory of those DLLs looking for a backslash,

followed by something that can pass for a path and file name. Such strings are relatively
abundant because there are a lot of registry paths hard-coded into those binaries. Suppose
you found the string \Windows NT\CurrentVersion\AppCompatFlags . Even
though ASLR randomizes DLL placement, the placement is consistent among all
processes, so an address calculated in one process is highliy likely to be valid in all
processes.

5. Create a DLL called C:\Windows NT\CurrentVersion\AppCompatFlags.dll .
Put your payload in this DLL.

6. From the attacking thread, call QueueUserAPC with the address of LoadLibraryW
as the function pointer, the victim thread as the thread handle, and a pointer to the fixed
string identified in part 4 as the last parameter.

7. The next time the victim thread processes APCs, it will pass \Windows NT\Current‐
Version\AppCompatFlags to the LoadLibraryW function, which will load the
payload DLL, thereby effecting code injection and consequent elevation of privilege.

Note that this attack fails if the victim thread never waits alertably, which is true of most

threads.

If you have been paying attention, the alarm bells probably went off at step 2. If you have

THREAD_SET_CONTEXT access to a thread, then you pwn that thread. There’s no need to use

QueueUserAPC to make the thread do your bidding. You already have enough to make the

https://devblogs.microsoft.com/oldnewthing/20150519-00/?p=45571

2/2

thread dance to your music. In other words, you are already on the other side of the airtight

hatchway.

Here’s how: Look for a code sequence that goes

 push someregister

 call LoadLibraryW

Use the SetThreadContext function to set the pushed register equal to the address of the

string you found in step 4, and set the instruction pointer to the code fragment. The thread

will then resume execution at the specified instruction pointer: It pushes the address of the

string, and then it calls LoadLibraryW . Bingo, your DLL loads, and you didn’t even have to

wait for the thread to wait alertably.

On non-x86 platforms, this is even easier: Since all other platforms use register-based calling

conventions, you merely have to load the address of the string into the “first parameter”

register (rcx for x64) and set the instruction pointer to the beginning of LoadLibaryW .

By default, THREAD_SET_CONTEXT access is granted only to the user, and never to lower

integrity levels. In other words, a low IL process cannot get THREAD_SET_CONTEXT access to

a medium or high integrity thread, and a medium IL process cannot get access to a high

integrity thread. This means that, by default, you can only get THREAD_SET_CONTEXT access

to threads that have equivalent permissions to what you already have, so there is no

elevation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

