
1/2

May 25, 2015

New C++ experimental feature: The tadpole operators
devblogs.microsoft.com/oldnewthing/20150525-00

Raymond Chen

How often have you had to write code like this:

x = (y + 1) % 10;
x = (y + 1) * (z - 1);
x = (wcslen(s) + 1) * sizeof(wchar_t);

Since the + and - operators have such low precedence, you end up having to parenthesize

them a lot, which can lead to heavily nested code that is hard to read.

Visual Studio 2015 RC contains a pair of experimental operators, nicknamed tadpole

operators. They let you add and subtract one from an integer value without needing

parentheses.

x = -~y % 10;
x = -~y * ~-z;
x = -~wcslen(s) * sizeof(wchar_t);

They’re called tadpole operators because they look like a tadpole swimming toward or away

from the value. The tilde is the tadpole’s head and the hyphen is the tail.

Syntax Meaning Mnemonic

-~y y + 1 Tadpole swimming toward a value makes it bigger

~-y y - 1 Tadpole swimming away from a value makes it smaller

To enable the experimental tadpole operators, add this line to the top of your C++ file

#define __ENABLE_EXPERIMENTAL_TADPOLE_OPERATORS

For example, here’s a simple program that illustrates the tadpole operators.

https://devblogs.microsoft.com/oldnewthing/20150525-00/?p=45044

2/2

#define __ENABLE_EXPERIMENTAL_TADPOLE_OPERATORS
#include <ios>
#include <iostream>
#include <istream>

int __cdecl main(int, char**)
{
 int n = 3;
 std::cout << "3 + 1 = " << -~n << std::endl;
 std::cout << "(3 - 1) * (3 + 1) " << ~-n * -~n << std::endl;
 return 0;
}

Remember that these operators are still experimental. They are not officially part of C++, but

you can play with them and give your feedback here learn more about them here.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2015/05/26/10617079.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

