
1/2

May 29, 2015

Under what conditions can SetFocus crash? Another
debugging investigation

devblogs.microsoft.com/oldnewthing/20150529-00

Raymond Chen

A customer asked, “Under what conditions can SetFocus crash?”

We have been going through our error reports and are puzzled by this one. The call stack is as
follows:

user32!_except_handler4

ntdll!ExecuteHandler2@20

ntdll!ExecuteHandler@20

ntdll!RtlDispatchException

ntdll!_KiUserExceptionDispatcher@8

0x130862

user32!UserCallWinProcCheckWow

user32!__fnDWORD

ntdll!_KiUserCallbackDispatcher@12

user32!NtUserSetFocus

contoso!DismissPopup

At the point of the crash, the DismissPopup function is calling SetFocus to restore focus
to a window handle that we got from an earlier call to GetActiveWindow . Is this safe? We
imagine it might crash if the message handler for the window was unloaded from memory
without being properly unregistered; are there any other reasons? More to the point, is there any
way to avoid the problem (without fixing the root cause of the crash, which we may not be able
to do, e.g. if that window was created by third-party code)?

The full dump file can be found on <location>. The password is <xyzzy>.

Indeed, what the customer suspected is what happened, confirmed by the dump file

provided.

The code behind the window procedure got unloaded. UserCallWinProcCheckWow is trying

to call the window procedure, but instead it took an exception. The address doesn't match

any loaded or recently-unloaded module probably because it was a dynamically generated

thunk, like the ones ATL generates.

https://devblogs.microsoft.com/oldnewthing/20150529-00/?p=45004
http://msdn.microsoft.com/en-us/library/windows/hardware/dn641144.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/11/16/6281925.aspx

2/2

There isn't much you can do to defend against this. Even if you manage to detect the problem

and avoid calling SetFocus in this problematic case, all you're doing is kicking the can

further down the road. Your program will crash the next time the window receives a message,

which it eventually will. (For example, the next time the user changes a system setting and

the WM_SETTINGCHANGE message is broadcast to all top-level windows, or the user plugs in

an external monitor and the WM_DISPLAYCHANGE message is broadcast to all top-level

windows.)

Basically, that other component pulled the pin on a grenade and handed it to your thread.

That grenade is going to explode sooner or later. The only question is when.

Such is the danger of giving your application an extension model that allows arbitrary third

party code to run. The third party code can do good things to make your program more

useful, but it can also do bad things to make your program crash.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

