
1/2

June 17, 2015

When you think you found a problem with a function,
make sure you’re actually calling the function

devblogs.microsoft.com/oldnewthing/20150617-00

Raymond Chen

On an internal mailing list, a tester asked if there were any known problems with the Find ‐

First File Ex function preventing a directory from being deleted and recreated.

Our code creates a test folder, then calls Find First File Ex to look inside the test folder.
When we’re done, we call Find Close , then delete the directory. When we try running the
test twice, the second time fails to create the test folder; we get ERROR_ACCESS_DENIED . But
if we switch to Find First File instead of Find First File Ex , then everything works as
expected.

Here’s our code, simplified.

// Assume all functions succeed except where indicated.

CreateDirectory(L"C:\\Test", NULL);

// This version works:
//
// WIN32_FIND_DATA data;
// HANDLE hFindFile = FindFirstFile(L"C:\\Test*", &data);

// This version doesn't:
//
WIN32_FIND_DATA data;
HANDLE hFindFile = FindFirstFileEx(L"C:\\Test*",
 FileExInfoBasic,
 &data,
 FindExSearchNameMatch,
 NULL,
 0);
FindClose(hFindFile);

RemoveDirectory(L"C:\\Test");

// If we used FindFirstFile, then this CreateDirectory succeeds.
// If we used FindFirstFileEx, then this CreateDirectory fails.
CreateDirectory(L"C:\\Test", NULL);

https://devblogs.microsoft.com/oldnewthing/20150617-00/?p=45361

2/2

I suggested that they try running their test with anti-malware software disabled. Anti-

malware software will frequently intrude on file operations, and it could be that the virus

scanner is still checking the old C:\Test directory when you get around to creating the new

one. Content indexers are another case where this can happen, but content indexers tend to

wait until the machine is quiet rather than introducing on actions as they occur. (Now, well-

written virus scanners and content indexers know to do things like abandon a file scan when

a delete request is made, or use opportunistic locks to get out of the way when an application

wants to do something with a file being scanned. But not all virus scanners and content

indexers as as well-written as we might like.)

We later heard back that they figured out the problem, and it wasn’t because of a virus

scanner or content indexing service.

The problem was that their code was running inside a test harness, and that test harness had

mocked the Find First File and Find Close functions, but it did not mock the Find ‐

First File Ex function. When the mock Find Close function was given a handle created by

the real Find First File Ex function, it got confused and ended up leaking the directory

handle. The Remove Directory function succeeded, but the directory was not fully removed

due to the outstanding handle, and the attempt to recreate the directory therefore failed.

The tester also confirmed that the problem did not exist when they ran the code outside the

test environment.

When you think you found a problem with a function, make sure you’re actually calling the

function. In this case, the code was running under nonstandard conditions: The test harness

had redirected a bunch of OS functions. As a result, when the code called Find Close , it

wasn’t actually calling Find Close but rather a mock function provided by the test harness.

To be fair, the tester was new to the team and was likely not even aware that the test harness

was mocking file I/O functions in the first place.

If you are having trouble with a function, one thing to check is that you’re actually calling the

function.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/04/15/10410965.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

