
1/3

June 22, 2015

Reinterpreting the bits of a 64-bit integer as if they were a
double-precision floating point number (and vice versa)

devblogs.microsoft.com/oldnewthing/20150622-00

Raymond Chen

Today’s Little Program takes a 64-bit integer and reinterprets its physical representation as a

double-precision floating point number.

using System;

class Program
{
static double ReinterpretAsDouble(long longValue)
{
 return BitConverter.ToDouble(BitConverter.GetBytes(longValue), 0);
}

static long ReinterpretAsLong(double doubleValue)
{
 return BitConverter.ToInt64(BitConverter.GetBytes(doubleValue), 0);
}

static void Main()
{
 Console.WriteLine(ReinterpretAsDouble(0x4000000000000000));
 Console.WriteLine("{0:X}", ReinterpretAsLong(2.0));
}
}

Our first attempt uses the Bit Converter class to convert the 64-bit integer to an array of

bytes, and then parses a double-precision floating point number from that byte array.

Maybe you’re not happy that this creates a short-lived byte[] array that will need to be

GC’d. So here’s another version that is a little sneakier.

https://devblogs.microsoft.com/oldnewthing/20150622-00/?p=45321

2/3

using System;
using System.Runtime.InteropServices;

class Program
{
[StructLayout(LayoutKind.Explicit)]
struct LongAndDouble
{
 [FieldOffset(0)] public long longValue;
 [FieldOffset(0)] public double doubleValue;
}

static double ReinterpretAsDouble(long longValue)
{
 LongAndDouble both;
 both.doubleValue = 0.0;
 both.longValue = longValue;
 return both.doubleValue;
}

static long ReinterpretAsLong(double doubleValue)
{
 LongAndDouble both;
 both.longValue = 0;
 both.doubleValue = doubleValue;
 return both.longValue;
}
...
}

This version creates a structure with an unusual layout: The two members occupy the same

physical storage. The conversion is done by storing the 64-bit integer into that storage

location, then reading the double-precision floating point value out.

There’s a third method that involves writing the 64-bit integer to a memory stream via

Binary Writer then reading it back with Binary Reader , but this is clearly inferior to the

Bit Converter so I didn’t bother writing it up.

Update: Damien points out that this functionality already exists in the BCL: Bit ‐

Converter.Double To Int64 Bits and Bit Converter.Int64 Bits To Double. But there doesn’t

appear to be a Bit Converter.Float To Int32 Bits method, so the techniques discussed

above are not completely useless.

Exercise: Why did I have to initialize the doubleValue before writing to longValue , and

vice versa? What are the implications of the answer to the above question? (Yes, I could have

written LongAndDouble both = new LongAndDouble(); , which automatically zero-

initializes everything, but then I wouldn’t have had an interesting exercise!)

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2015/06/22/10623021.aspx#10623129
https://msdn.microsoft.com/en-us/library/system.bitconverter.doubletoint64bits(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.bitconverter.int64bitstodouble(v=vs.110).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

