
1/2

July 3, 2015

Why does the BackupWrite function take a pointer to a
modifiable buffer when it shouldn’t be modifying the
buffer?

devblogs.microsoft.com/oldnewthing/20150703-00

Raymond Chen

The Backup Write function takes a non-const pointer to the buffer to be written to the file

being restored. Will it actually modify the buffer? Assuming it doesn’t, why wasn’t it declared

const? It would be much more convenient if it took a const pointer to the buffer, so that

people with const buffers didn’t have to const_cast every time they called the function.

Would changing the parameter from non-const to const create any compatibility problems?

Okay, let’s take the questions in order.

Will it actually modify the buffer? No.

Why wasn’t it declared const? My colleague Aaron Margosis explained that the function dates

back to Windows NT 3.1, when const-correctness was rarely considered. A lot of functions

from that area (particularly in the kernel) suffer from the same problem. For example, the

computer name passed to the Reg Connect Registry function is a non-const pointer even

though the function never writes to it.

Last question: Can the parameter be changed from non-const to const without breaking

compatibility?

It would not cause problems from a binary compatibility standpoint, because a const pointer

and a non-const pointer take the same physical form in Win32. However, it breaks source

code compatiblity. Consider the following code fragment:

https://devblogs.microsoft.com/oldnewthing/20150703-00/?p=45221
http://msdn.microsoft.com/en-us/library/windows/desktop/aa362511(v=vs.85).aspx
http://blogs.msdn.com/b/aaron_margosis/

2/2

BOOL WINAPI TestModeBackupWrite(
 HANDLE hFile,
 LPBYTE lpBuffer,
 DWORD nNumberOfBytesToWrite,
 LPDWORD lpNumberOfBytesWritten,
 BOOL bAbort,
 BOOL bProcessSecurity,
 LPVOID *lpContext)
{
... simulate a BackupWrite ...
return TRUE;
}

BOOL (WINAPI *BACKUPWRITEPROC)(HANDLE, LPBYTE, DWORD,
 LPDWORD, BOOL, BOOL, LPVOID *);
BACKUPWRITEPROC TestableBackupWrite;

void SetTestMode(bool testing)
{
if (testing) {
 TestableBackupWrite = TestModeBackupWrite;
} else {
 TestableBackupWrite = BackupWrite;
}
}

The idea here is that the program can be run in test mode, say to do a simulated restore. (You

see this sort of thing a lot with DVD-burning software.) The program uses Testable Backup ‐

Write whenever it wants to write to a file being restored from backup. In test mode,

Testable Backup Write points to the Test Mode Backup Write function; in normal mode, it

points to the Backup Write function.

If the second parameter were changed from LPBYTE to const BYTE * , then the above

code would hit a compiler error.

Mind you, maybe it’s worth breaking some source code in order to get better const-

correctness, but for now, the cost/benefit tradeoff biases toward leaving things alone.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

