
1/14

July 29, 2015

The Itanium processor, part 3: The Windows calling
convention, how parameters are passed

devblogs.microsoft.com/oldnewthing/20150729-00

Raymond Chen

The calling convention on Itanium uses a variable-sized register window. The mechanism by

which this is done is rather complicated, so I’m first going to present a conceptual version,

and then I’ll come back and fix up some of the implementation details. For today, I’m just

going to talk about how parameters are passed. There are other aspects of the calling

convention that I will cover in separate articles.

Recall that the first 32 registers r0 through r31 are static (do not change), and the remaining

registers r32 through r127 are stacked. These stacked registers fall into three categories:

input registers, local registers, and output registers.

The input registers receive the function parameters. On entry to a function, the function’s

parameters are received in registers starting at r32 and increasing. For example, a function

that takes two parameters receives the first parameter in r32 and the second parameter in

r33.

Immediately after the input registers are the registers for the function’s private use. These are

known as local registers. For example, if that function with two parameters also wants four

registers for private use, those private registers would be r34 through r37.

After the input registers are the registers used to call other functions, known as output

registers.¹ For example, if the function with two parameters and four local registers wants to

call a function that has three parameters, it would put those parameters in registers r38

through r40. Therefore, a function needs as many output registers as the maximum number

of parameters of any function it calls.

The input registers and local registers are collectively known as the local region. The input

registers, local registers, and output registers are collectively known as the register frame.

Any registers higher than the last output register are off-limits to the function, and we shall

henceforth pretend they do not exist. Since the registers go up to r127, and in practice

register frames are around one or two dozen registers, there end up being a lot of registers

https://devblogs.microsoft.com/oldnewthing/20150729-00/?p=90801

2/14

that go unused.

The first thing a function does is notify the processor of its intended register usage. It uses

the alloc instruction to say how many input registers, local registers, and output registers

it needs.

alloc r35 = ar.pfs, 2, 4, 3, 0

This means, “Set up my register frame as follows: Two input registers, four local registers,

three output registers, and no rotating registers. Put the previous register frame state (pfs) in

register r35.”

The second thing a function does is save the return address, typically in one of the local

registers it just created. For example, the above alloc might be followed by

mov r34 = rp

On entry to a function, the rp register contains the caller’s return address, and most of the

time, the compiler will save the return address in a register. Note that this means that on the

Itanium, a stack buffer overrun will never overwrite a return address, since return addresses

are not kept on the stack. (Let that sink in. On Itanium, return addresses are not kept on the

stack. This means that tricks like _AddressOfReturnAddress will not work!)

By convention, the rp and ar.pfs are saved in consecutive registers (here, r34 and r35). This

convention makes exception unwinding slightly easier.

Let’s see what happens when somebody calls this function. Suppose the caller’s register

frame looks like this:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41

The caller places the parameters to our function in its output registers, in this case r37 and

r38. (Our function takes only two parameters, so r39 and beyond are not used.)

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41

0 A … F G H I J K L M N ? ? ?

http://msdn.microsoft.com/library/s975zw7k

3/14

The caller then invokes our function.

Our function opens by performing this alloc , declaring two input registers, four local

registers, and three output registers.

alloc r35 = ar.pfs, 2, 4, 3, 0

That alloc instruction shuffles the registers like this:

The static registers don’t change.

The registers in the caller’s local region are saved in a magic place.

The specified number of output registers from the caller become the new function’s

input registers.

New local and output registers are created but left uninitialized.

The previous function state is placed in the specified register (for restoration at

function exit). There are many parts of the function state, but the part we care about is

the frame state, which describes how registers are assigned.

Here’s what the register frame looks like after all but the last steps above:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

0 A … F G M N ? ? ? ? ? ? ?

unchanged moved uninitialized

The last step (storing the previous function state in the specified register) updates the r35

register:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

0 A … F G M N ? pfs ? ? ? ? ?

The next instruction is typically one to save the return address.

mov r34 = rp

4/14

After that mov instruction, the function prologue is complete, and the register state looks

like this:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

0 A … F G M N ra pfs ? ? ? ? ?

where ra is the function’s return address.

At this point the function runs and does actual work. Once it’s done, its register state might

look like this:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

0 A′ … F′ G′ T U ra pfs V W X Y Z

The function epilogue typically consists of three instructions:

mov rp = r34 // prepare to return to caller

mov ar.pfs = r35 // restore previous function state

br.ret rp // return!

This sequence begins by copying the saved return address into the rp register so that we can

jump back to it. (We could have copied r34 into any scratch branch register, but by

convention we use the rp register because it makes exception unwinding easier.)

Next, it restores the register state from the pfs it saved at function entry. Finally, it transfers

control back to the caller by jumping through the rp register. (We cannot do a br.ret r34

because r34 is not a branch register; the parameter to br.ret must be a branch register.)

Restoring the previous function state causes the caller’s register frame layout to be restored,

and the values of the registers in the caller’s local region are restored from that magic place.

The register state upon return back to the caller looks like this:

static local region output

5/14

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41

0 A′ … F′ G′ H I J K L ? ? ? ? ?

unchanged restored uninitialized

From the point of view of the calling function, calling another function has the following

effect:

Static registers are shared with the called function. (Any changes to static registers are

visible to the caller.)

The local region is preserved across the call.

The output registers are trashed by the call.

At most eight parameters are passed in registers. Any additional parameters are passed on

the stack, and it is the caller’s responsibility to clean them up. (The stack-based parameters

begin after the red zone. We’ll talk more about the red zone later.)

Thank goodness for the parameter cap, because a variadic function doesn’t know how many

parameters were passed, so it would otherwise not know how many input parameters to

declare in its alloc instruction. The parameter cap means that variadic functions alloc

eight input registers, and typically the first thing they do is spill them onto the stack so that

they are contiguous with any parameters beyond 8 (if any). Note that this spilling must be

done very carefully to avoid crashing if the corresponding register does not correspond to an

actual parameter but happens to be a NaT left over from a failed speculative execution.

(There is a special instruction for spilling without taking a NaT consumption exception.)

If any parameter is smaller than 64 bits, then the unused bits of the corresponding register

are garbage and should be ignored. I didn’t discuss floating point parameters or aggregates.

You can read Thiago’s comment for a quick version, or dig into the Itanium Software

Conventions and Runtime Architecture Guide (Section 8.5: Parameter Passing) for gory

details.

Okay, that’s the conceptual model. The actual implementation is not quite as I described it,

but the conceptual model is good enough for most debugging purposes. Here are some of the

implementation details which will come in handy if you need to roll up your sleeves.

First of all, the processor does not actually distinguish between input registers and local

registers. It only cares about the local region. In other words, the parameters to the alloc

instruction are

Size of local region.

Number of output registers.

http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/13/58199.aspx#62212
http://www.intel.com/content/dam/www/public/us/en/documents/guides/itanium-software-runtime-architecture-guide.pdf

6/14

Number of rotating registers.

Register to receive previous function state.

When the called function established its register frame, the processor just takes all the

caller’s output registers (even the ones that aren’t actually relevant to the function call) and

slides them down to r32. It is the compiler’s responsibility to ensure that the code passes the

correct number of parameters. Therefore, our diagram of the function call process would

more accurately go like this: The caller’s register frame looks like this before the call:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41

0 A … F G H I J K L M N X₁ X₂ X₃

where the X values are whatever garbage values happen to be left over from previous

computations, possibly even NaT.

When the called function sets up its register frame (before storing the previous register

frame), it gets this:

static local region output

input local

r0 r1 … r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

0 A … F G M N X₁ X₂ X₃ ? ? ? ?

unchanged moved uninitialized

The processor took all the output registers from the caller and slid them down to r32 through

r36.

Of course, the called function shouldn’t try to read from any registers beyond r33, if it knows

what’s good for it, because those registers contain nothing of value and may indeed be

poisoned by a NaT.

This little implementation detail has no practical consequences because those registers were

uninitialized in the conceptual model anyway. But it does mean that when you disassemble

the alloc instruction, you’ll see that the distinction between input registers and local

7/14

registers has been lost, and that both sets of registers are reported as input registers. In other

words, an instruction written as

alloc r34 = ar.pfs, 2, 4, 3, 0

disassembles as

alloc r34 = ar.pfs, 6, 0, 3, 0

The disassembler doesn’t know how many of the six registers in the input region are input

registers and how many are local, so it just treats them all as input registers.

That explains some of the undefined registers, but what about those question marks? To

solve this riddle, we need to answer a different question first: “Where is this magic place that

the caller’s local region gets saved to and restored from?”

This is where the infamous Itanium second stack comes into play.

There are two stacks on Itanium. One is indexed by the sp register and is what one generally

means when one says the stack. The other stack is indexed by the bsp register (backing store

pointer), and it is the magic place where these “registers from long ago” are saved. The bsp

register grows upward in memory (toward higher addresses), opposite from the sp which

grows downward (toward lower addresses). Windows allocates the two stacks right next to

each other, Here’s an artistic impression by Slava Oks. Bear in mind that Slava drew the

diagram upside-down (low addresses at the top, high addresses at the bottom). The bsp

grows toward toward higher addresses, but in Slava’s diagram, that direction is downward.

One curious implementation detail is that the two stacks abut each other without a gap. I’m

told that the kernel team considered putting a no-access page between the two stacks, so that

a runaway memory copy into the stack would encounter an access violation before it reached

the backing store. For whatever reason, they didn’t bother.

Now, the processor is sneaky and doesn’t actually push the values onto the backing store

immediately. Instead, the processor rotates them into high-numbered unused registers (all

the registers beyond the last output register), and only when it runs out of space there does it

spill them into the backing store. When the function returns, the rotation is undone, and the

values squirreled away into the high-numbered unused registers magically reappear in the

caller’s local region.

Each time a function is called, the registers rotate to the left, and when a function returns, the

registers rotate to the right. As a result, the local regions of functions in the call stack can be

found among the off-limits registers, up until we reach the last spill point.

Suppose the call stack looks like this (most recent function at the top):

http://blogs.msdn.com/b/oldnewthing/archive/2005/04/21/410397.aspx
http://blogs.msdn.com/b/slavao/archive/2005/03/19/399117.aspx

8/14

a() -- current function

b()

c()

d()

e()

f()

g()

If we zoom out, we can see all those local regions.

static a open g f e d c b

LR O LR LR LR LR LR LR

•••••• ••••• ••• •••••••••••••• ••••• ••••• •••••• •••••• •••• ••••••

Why don’t we see any output registers for any functions other than the current one? You

know why: Because at each function call, the caller’s output registers become the called

function’s input registers. If you really wanted to draw the output registers, you could do it

like this, where each function’s input registers is shared with the caller’s output registers.

static a open g e c

I L O I L O I L O I L O

•••••• •• ••• ••• •••••••••••••• •• ••• •• ••• ••• ••• ••• ••• •• •• ••• •••

O I L O I L O I L

b f d b

But we won’t bother drawing this exploded view any more.

Now, if the function a calls another function x , then all the registers rotate left, with a ‘s

local region wrapping around to the end of the list:

static x open g f e d c b a

LR O LR LR LR LR LR LR LR

•••••• ••• •••• •••••••••• ••••• ••••• •••••• •••••• •••• •••••• •••••

And when x returns, the registers rotate right, bringing us back to

9/14

static a open g f e d c b

LR O LR LR LR LR LR LR

•••••• ••••• ••• •••••••••••••• ••••• ••••• •••••• •••••• •••• ••••••

Note that the conceptual model doesn’t care about this implementation detail. In theory,

future versions of the Itanium processor might have additional “bonus registers” after r127

which are programmatically inaccessible but which are used to expand the number of register

frames that can be held before needing to spill.

With this additional information, you now can see the contents of those undefined registers

on entry to a function: They contain whatever garbage happened to be left over in the open

registers. Similarly, the contents of those undefined output registers after the function

returns to its caller are the leftover values in the called function’s local region.

You can also see the contents of the uninitialized output registers on return from a function:

They contain whatever garbage happened to be left over in the called function’s input

registers. This behavior is actually documented by the processor, so in theory somebody

could invent a calling convention where information is passed from a function back to its

caller through the input registers, say, for a language that supports functions with multiple

return values. (In other words, the input registers are actually in/out registers.) The

Windows calling convention doesn’t use this feature, however.

It so happens that the debugger forces a full spill into the backing store when it gains control.

This is useful, because groveling into the backing store gives you a way to see the local

regions of any function on the stack.

10/14

kd> r

...

 r32 = 6fbffd21130 0 r33 = 1170065 0

 r34 = 6fbffd23700 0 r35 = 8 0

 r36 = 6fbffd21338 0 r37 = 20000 0

 r38 = 8000 0 r39 = 2000 0

 r40 = 800 0 r41 = 400 0

 r42 = 100 0 r43 = 80 0

 r44 = 200 0 r45 = 10000 0

 r46 = 7546fdf0 0 r47 = c000000000000693 0

 r48 = 5041 0 r49 = 75ab0000 0

 r50 = 6fbffd21130 0 r51 = 1170065 0

 r52 = 6fbfc79f770 0 r53 = 7546cbe0 0

kd> dq @bsp

000006fb`fc7a02e0 000006fb`ffd21130 00000000`01170065 // r32 and r33

000006fb`fc7a02f0 000006fb`ffd23700 00000000`00000008 // r34 and r35

000006fb`fc7a0300 000006fb`ffd21338 00000000`00020000 // r36 and r37

000006fb`fc7a0310 00000000`00008000 00000000`00002000 // r38 and r39

000006fb`fc7a0320 00000000`00000800 00000000`00000400 // r40 and r41

000006fb`fc7a0330 00000000`00000100 00000000`00000080 // r42 and r43

000006fb`fc7a0340 00000000`00000200 00000000`00010000 // r44 and r45

000006fb`fc7a0350 00000000`7546fdf0 c0000000`00000693 // r46 and r47

But wait, ia64 integer registers are 65 bits wide, not 64. The extra bit is the NaT bit. Where

did that go?

Whenever the bsp hits a 512-byte boundary (bsp & 0x1F8 == 0x1F8, or after 63 registers

have been spilled), the value spilled into the backing store is not a 64-bit register but rather

the accumulated NaT bits. You are not normally interested in the NaT bits, so the only

practical consequence of this is that you have to remember to skip an entry whenever you hit

a 512-byte boundary.

Suppose we wanted to look at our caller’s local region. Here’s the start of a sample function.

Don’t worry about most of the instructions, just pay attention to the alloc and the mov

... = rp .

SAMPLE!.Sample:

 alloc r47 = ar.pfs, 013h, 00h, 04h, 00h

 mov r48 = pr

 addl r31 = -2004312, gp

 adds sp = -1072, sp ;;

 ld8.nta r3 = [sp]

 mov r46 = rp

 adds r36 = 0208h, r32

 or r49 = gp, r0 ;;

Suppose you hit a breakpoint partway through this function, and you want to know why the

caller passed a strange value for the first input parameter r32.

11/14

From reading the function prologue, you see that the return address is kept in r46, so you can

disassemble there to see how your caller set up its output parameters:

kd> u @r46-20

SAMPLE!.Caller+2bd0:

 ld8 r47 = [r32]

 ld4 r46 = [r33]

 or r45 = r35, r0

 nop.b 00h

 nop.b 00h

 br.call.sptk.many rp = SAMPLE!.Sample

(Notice the nop instructions which suggest that this is unoptimized code.)

But we don’t know which of those registers are the output registers of the caller. For that, we

need to know the register frame of the caller. We see from the alloc instruction that the

previous function state (pfs) was saved in the r47 register.

kd> ?@r47

Evaluate expression: -4611686018427386221 = c0000000`00000693

This value is not easy to parse. The bottom seven bits record the total size of the caller’s

register frame, which includes both the local region and the output registers. The size of the

local region is kept in bits 7 through 13, which is a bit tricky to extract by eye. You take the

third and fourth digits from the right, double the value, and add one more if the second digit

from the right is 8 or higher. This is easier to do than to explain:

The third- and fourth-to-last digits are 06 hex.

Double that, and you get 12 (decimal).

Since the second-to-last digit is 9, add one more.

Result: 13.

The previous function’s local region has 13 registers. Therefore, the previous function’s

output registers begin at 32 + 13 = 45. (You can also see that the previous function had 0x13

= 19 registers in its register frame, and you can therefore infer that it had 19 − 13 = 6 output

registers.)

Applying this information to the disassembly of the caller, we see that the caller passed

first output register r45 = r35. (Recall that the r0 register is always zero, so or’ing it

with another value just copies that other value.)

second output register r46 = 4-byte value stored at [r33]

third output register r47 = 8-byte value stored at [r32]

That first output register was a copy of the r35 register. We can grovel through the backing

store to see what that value is.

12/14

0:000> dq @bsp-0n13*8 l4

000006fb`ffe906d8 00000000`4b1e9720 00000000`4b1ea2e8 // r32 and r33

000006fb`ffe906e8 00000000`0114a7c0 000006fb`fe728cac // r34 and r35

And now we have extracted the registers from our caller’s local region. Specifically, we see

that the caller’s r35 is 000006fb`fe728cac .

We can extend this technique to grovel even further back in the stack. To do that, we need to

obtain the pfs chain so we can see the structure of the register frame for each function in the

call stack.

From the disassembly above, we saw that the caller was kept in r46. To go back another level,

we need to find that caller’s caller. We merely repeat the exercise, but with the caller.

Sometimes it can be hard to find the start of a function (especially if you don’t have symbols);

it can be easier to look for the end of the function instead! Instead of looking for the alloc

and mov ... = rp instructions which save the previous function state and return address,

we look for the mov ar.pfs = ... and mov rp = ... instructions which restore them.

Here’s an example of a stack trace I had to reconstruct:

0:000> u

00000000`4b17e9d4 mov rp = r37 // return address

00000000`4b17e9e4 mov.i ar.pfs = r38 // restore pfs

00000000`4b17e9e8 br.ret.sptk.many rp ;; // return to caller

0:000> dq @bsp

000006fb`ffe90758 000006fb`fe761cc0 000006fb`ffe8f860 // r32 and r33

000006fb`ffe90768 000006fb`ffe8fa70 00000000`00000104 // r34 and r35

000006fb`ffe90778 00000000`0114a7c0 00000000`4b1b6890 // r36 and r37

000006fb`ffe90788 c0000000`0000050e 00000000`00005001 // r38 and r39

Double the 05 to get 10 (decimal), and don’t add one since the next digit (0) is less than 8.

The previous function therefore has 10 registers in its local region.

The current function’s return address is kept in r37 and the pfs in r38. I’ve highlighted them

in the bsp dump.

Let’s disassemble at the return address and dump that function’s local variables, thereby

walking back one level in the call stack.

13/14

0:000> u 00000000`4b1b6890

...

00000000`4b1b6bd4 mov rp = r38 ;; // return address

00000000`4b1b6be4 mov.i ar.pfs = r39 // restore pfs

00000000`4b1b6be8 br.ret.sptk.many rp ;;

// we calculated that the local region of the previous function is size 0xA

0:000> dq @bsp-a*8 la

000006fb`ffe90708 000006fb`fe73bfc0 000006fb`fe73ff10 // r32 and r33

000006fb`ffe90718 00000000`00000000 000006fb`ffe8f850 // r34 and r35

000006fb`ffe90728 000006fb`ffe8f858 00000000`00000000 // r36 and r37

000006fb`ffe90738 00000000`4b1e9350 c0000000`00000308 // r38 and r39

000006fb`ffe90748 00000000`00009001 00000000`4b57e000 // r40 and r41

By studying the value in the caller’s r39, we see that the caller’s caller has 3 × 2 + 0 = 6

registers in its local region. And the caller’s r38 gives us the return address. Let’s walk back

another frame in the call stack.

0:000> u 4b1e9350

...

00000000`4b1e9354 mov rp = r34 // return address

00000000`4b1e9368 mov.i ar.pfs = r35 // restore pfs

00000000`4b1e9378 br.ret.sptk.many rp ;;

0:000> dq @bsp-a*8-6*8 l6

000006fb`ffe906d8 00000000`0114a7c0 000006fb`fe728cac // r32 and r33

000006fb`ffe906e8 00000000`4b1e9720 c0000000`00000389 // r34 and r35

000006fb`ffe906f8 00000000`00009001 00000000`4b57e000 // r36 and r37

This time, the return address is in r34 and the previous pfs is in r35. This time, the caller’s

caller’s caller has 3 × 2 + 1 = 7 registers in its local region.

0:000> u 4b1e9720

...

00000000`4b1e9784 mov rp = r35 // return address

00000000`4b1e9788 adds sp = 010h, sp ;;

00000000`4b1e9790 nop.m 00h

00000000`4b1e9794 mov pr = r37, -2 ;;

00000000`4b1e9798 mov.i ar.pfs = r36 // restore pfs

00000000`4b1e97a0 nop.m 00h

00000000`4b1e97a4 nop.f 00h

00000000`4b1e97a8 br.ret.sptk.many rp ;;

0:000> dq @bsp-a*8-6*8-7*8 l7

000006fb`ffe906a0 00000000`0114a7c0 00000000`00000000 // r32 and r33

000006fb`ffe906b0 00000000`0114a900 00000000`4b19ba00 // r34 and r35

000006fb`ffe906c0 c0000000`0000058f 00000000`00009001 // r36 and r37

000006fb`ffe906d0 00000000`4b57e000 // r38

This function also allocates 0x10 bytes from the stack, so if you want to see its stack variables,

you can dump the values at sp + 0x10 for length 0x10. The + 0x10 is to skip over the red

zone.

Anyway, that’s the way to reconstruct the call stack on an Itanium. Repeat until bored.

14/14

Maybe you can spot the fast one I pulled when discussing how the alloc instruction and

pfs register work. More details next time, when we discuss leaf functions and the red zone.

Bonus chapter: How does spilling actually work?

¹ When not preparing to call another function, the output registers can be used for any

purpose, with the understanding that the values will not be preserved across a function call.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20150730-01/?p=90781
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

