
1/4

July 31, 2015

The Itanium processor, part 5: The GP register, calling
functions, and function pointers

devblogs.microsoft.com/oldnewthing/20150731-00

Raymond Chen

We saw a brief mention of the gp register last time, where we saw it used when we calculated

the address of a global variable.

The only addressing mode supported by the Itanium processor is register indirect (possibly

with post-increment). There is no absolute addressing mode. If you want to access a global

variable, you need to calculate its address, and the convention for this is that the gp register

points to the module’s global variables. If you want to access a global variable stored at offset

n in the global data segment, you do it in two steps:

 addl r30 = n, gp ;; // r30 -> global variable
 ld4 r30 = [r30] // load 4 bytes from the global variable

The name gp stands for global pointer since it is the pointer used to access global variables.

(Note that since immediates are signed, the range of values of n is −2MB to +2MB.)

Those of you familiar with the PowerPC will recognize this model, since it is very similar to

the Table of Contents model, except that Itanium uses a single table of contents for the entire

module, as opposed to the PowerPC which gives each function its own table of contents.

The Itanium addl instruction is limited to a 22-bit immediate, which provides a reach of

4MB. This means that the above pattern is viable only for 4MB of global variables. Since

some modules have more than 4MB of global data, the compiler separates global data into

two categories, large and small. Small data objects are stored directly in the global data

segment, but large data objects are not. Instead, the large data object is placed outside the

global data segment, and all that is placed in the global data segment is a pointer to the large

object. This means that accessing a large object actually takes three instructions.

 addl r30 = n, gp ;; // r30 -> global variable forwarder
 ld8 r30 = [r30] ;; // r30 -> global variable
 ld4 r30 = [r30] // load 4 bytes from the global variable

https://devblogs.microsoft.com/oldnewthing/20150731-00/?p=90771
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/20/60603.aspx

2/4

We see that it is vitally important that the gp register be set properly. Otherwise, the code has

no idea where its global variables are. The Itanium calling convention says that on entry to a

function, the gp register must be set to that function’s global pointer.

Okay, so if you’re going to call a function, how do you know what global pointer it expects?

Since all functions in the same module share the same global variables, the answer is easy if

you are calling a function within the same module: You don’t need to do anything special

with gp, since the caller’s gp is the same as the callee’s gp. You also don’t need to perform an

indirect call; you know where the target is and can use a direct br.call OtherFunction .¹

On the other hand, if you are calling a function through a function pointer, then the target of

the call might belong to another module. How are you supposed to know what the target

function wants gp to be?

The answer is that on Itanium, a function pointer is not the address of the first instruction.

Rather, it is a pointer to a structure containing two pointers. The first pointer in the structure

points to the first instruction of the target function. The second pointer is the target

function’s gp. Therefore, calling a function through a function pointer looks like this:

 // suppose the function pointer is in r30
 ld8 r31 = [r30], 8 ;; // get the function address
 // then add 8 to r30
 ld8 gp = [r30] // get the function's gp
 mov b6 = r31 // move to branch register
 br.call.dptk.many rp = b6 ;; // call function in b6
 or gp = r41, r0 // gp = r41 OR 0 = r41

First, we load the address of the first instruction into the r31 register, using a post-increment

addressing mode so that r30 after the instruction points to the callee’s gp.

Next, we load the gp register with the caller’s gp. Simultaneously, we move r31 to b6 so that

we can use it as the target of the br.call. (Branch registers cannot be the target of a ld8

instruction, which is why we needed to use r31 as a middle-man.)

Now that gp is set up properly, we can call the function through the branch register.

After the call returns, the gp register is now whatever value is left over by the function we

called. We need to set gp to the current function’s global pointer, which for the sake of

example we’ll assume had been saved in the r41 register.

There’s yet another wrinkle: The naïve imported function. In the case of an imported

function not declared with the dllimport attribute, the compiler doesn’t know that the

function is imported. It acts as if the function is part of the current module. On x86, this is

simulated by making a stub function which jumps to the real (imported) function. On

Itanium, the same thing is done, with a stub function that looks like this:

http://blogs.msdn.com/b/oldnewthing/archive/2006/07/21/673830.aspx

3/4

.ImportedFunction:
 addl r30 = n, gp ;; // r30 -> function descriptor
 ld8 r31 = [r30], 8;; // get the function address
 // then add 8 to r30
 ld8 gp = [r30] // get the function's gp
 mov b6 = r31 // move to branch register
 br.cond.sptk.many b6 ;; // jump there

The stub function loads the gp register with the value expected by the imported function then

jumps to the imported function. Unconditional computed jumps are encoded as conditional

jumps where the qualifying predicate is p0, which is always true.

The possibility that any function is really a stub function for an imported function this

creates a problem for the compiler: Since any function could be an imported function in

disguise, the compiler must assume that any function is potentially imported and therefore

may result in the gp register being trashed. Therefore, the compiler needs to restore the gp

register after any function call.

Now, the above pessimistic assumption can be relaxed if the compiler has other information

available to it. For example, if the function being called is in the same translation unit, then

the compiler can see by inspection that the target function is not a stub and therefore can

elide the restoration of gp. Similarly, if link-time code generation is enabled, then the linker

can see all the code in the module and see whether the target function is a stub or a real

function.

Exercise: How does tail-call elimination affect this optimization?

Bonus reading: Programming for 64-bit Windows which spends nearly all its time talking

about the gp register.

¹ The direct call instruction has a reach of 16MB, so if the function you want to call is too far

away, the linker redirects the br.call to a stub function which in turn jumps to the final

destination.

 br.call.dptk.many stub_for_OtherFunction
...

stub_for_OtherFunction:
 ... jump to OtherFunction ...

You have a few options for jumping to the function.

If the stub is within 16MB of the target, it can use a br.cond direct jump:

stub_for_OtherFunction:
 br.cond.sptk.many OtherFunction

The stub can load the target address from the data segment and use an indirect jump:

http://msdn.microsoft.com/en-us/magazine/bb985017.aspx

4/4

stub_for_OtherFunction:
 addl r3 = n, gp ;; // look up the function address
 ld8 r3 = [r3] ;; // fetch it
 mov b6 = r3 ;; // prepare to jump there
 br.cond.sptk.many b6 ;; // and off we go

The stub can load the target address offset from data stored in the code segment, then

apply the offset to the current instruction pointer to determine the target:

stub_for_OtherFunction:
 mov r3 = iip ;; // get current location
 addl r3 = n, r3 ;; // find the offset
 ld8 r2 = [r3] ;; // load the offset
 addl r2 = r2, r3 ;; // apply to current location
 mov b6 = r2 ;; // prepare to jump there
 br.cond.sptk.many b6 ;; // and off we go

This last case is tricky because the Itanium conventions forbid relocations in the code

segment; all code is position-independent. Therefore, the data in the code segment must not

be relocatable. We work around this by storing an offset rather than the absolute address and

applying the offset at runtime.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

