
1/12

August 5, 2015

The Itanium processor, part 8: Advanced loads
devblogs.microsoft.com/oldnewthing/20150805-00

Raymond Chen

Today we’ll look at advanced loads, which is when you load a value before you’re supposed to,

in the hope that the value won’t change in the meantime.

Consider the following code:

int32_t SomeClass::tryGetValue(int32_t *value)
{
if (!m_errno) {
 *value = m_value;
 m_readCount++;
}
return m_errno;
}

Let’s say that the Some Class has m_value at offset zero, m_errno at offset 4, and

m_readCount at offset 8.

The naïve way of compiling this function would go something like this:

https://devblogs.microsoft.com/oldnewthing/20150805-00/?p=91171

2/12

 // we are a leaf function, so no need to use "alloc" or to save rp.
 // on entry: r32 = this, r33 = value

 addl r30 = 08h, r32 // calculate &m_errno
 addl r29 = 04h, r32 ;; // calculate &m_readCount

 ld4 ret0 = [r30] ;; // load m_errno

 cmp4.eq p6, p7 = ret0, r0 // p6 = m_errno == 0, p7 = !p6

(p7) br.ret.sptk.many rp // return m_errno if there was an error¹

 ld4 r31 = [r32] ;; // load m_value (at offset 0)
 st4 [r33] = r31 ;; // store m_value to *value

 ld4 r28 = [r29] ;; // load m_readCount
 addl r28 = 01h, r28 ;; // calculate m_readCount + 1
 st4 [r29] = r28 ;; // store updated m_readCount

 ld4 ret0 = [r30] // reload m_errno for return value

 br.ret.sptk.many rp // return

First, we calculate the addresses of our member variables. Then we load m_errno , and if

there is an error, then we return it immediately. Otherwise, we copy the current value to

*value , load m_readCount , increment it, and finally, we return m_errno .

The problem here is that we have a deep dependency chain.

addl r30 = 08h, r32

↓

ld4 ret0 = [r30]

↓

cmp4.eq p6, p7 = ret0, r0

↙ ↓

(p7) br.ret.sptk.many rp ld4 r31 = [r32]

↓

st4 [r33] = r31 addl r29 = 04h, r32

non-obvious dependency ↓ ↙

ld4 r28 = [r29]

3/12

↓

addl r28 = 01h, r28

↓

st4 [r29] = r28

non-obvious dependency ↓

ld4 ret0 = [r30]

↓

br.ret.sptk.many rp

Pretty much every instruction depends on the result of the previous instruction. Some of

these dependencies are obvious. You have to calculate the address of a member variable

before you can read it, and you have to get the result of a memory access befure you can

perform arithmetic on it. Some of the dependencies are not obvious. For example, we cannot

access m_value or m_readCount until after we confirm that m_errno is zero to avoid a

potential access violation if the object straddles a page boundary with m_errno on one page

and m_value on the other (invalid) page. (We saw last time how this can be solved with

speculative loads, but let’s not add that to the mix yet.)

Returning m_errno is a non-obvious dependency. We’ll see why later. For now, note that

the return value came from a memory access, which means that if the caller of the function

tries to use the return value, it may stall waiting for the result to arrive from the memory

controller.

When you issue a read on Itanium, the processor merely initiates the operation and proceeds

to the next instruction before the read completes. If you try to use the result of the read too

soon, the processor stalls until the value is received from the memory controller. Therefore,

you want to put as much distance as possible between the load of a value from memory and

the attempt to use the result.

Let’s see what we can do to parallelize this function. We’ll perform the increment of

m_readCount and the fetch of m_value simultaneously.

4/12

 // we are a leaf function, so no need to use "alloc" or to save rp.
 // on entry: r32 = this, r33 = value

 addl r30 = 08h, r32 // calculate &m_errno
 addl r29 = 04h, r32 ;; // calculate &m_readCount

 ld4 ret0 = [r30] ;; // load m_errno

 cmp4.eq p6, p7 = ret0, r0 // p6 = m_errno == 0, p7 = !p6

(p7) br.ret.sptk.many rp // return m_errno if there was an error

 ld4 r31 = [r32] // load m_value (at offset 0)
 ld4 r28 = [r29] ;; // preload m_readCount

 addl r28 = 01h, r28 // calculate m_readCount + 1
 st4 [r33] = r31 ;; // store m_value to *value

 st4 [r29] = r28 // store updated m_readCount

 br.ret.sptk.many rp // return (answer already in ret0)

We’ve basically rewritten the function as

int32_t SomeClass::getValue(int32_t *value)
{
int32_t local_errno = m_errno;
if (!local_errno) {
 int32_t local_readCount = m_readCount;
 int32_t local_value = m_value;
 local_readCount = local_readCount + 1;
 *value = local_value;
 m_readCount = local_readCount;
}
return local_errno;
}

This time we loaded the return value from m_errno long before the function ends, so when

the caller tries to use the return value, it will definitely be ready and not incur a memory stall.

(If a stall were needed, it would have occurred at the cmp4 .) And we’ve also shortened the

dependency chain significantly in the second half of the function.

addl r30 = 08h, r32

↓

ld4 ret0 = [r30]

↓

5/12

cmp4.eq p6, p7 = ret0, r0 addl r29 = 04h, r32

↙ ↓ ↘ ↓

(p7) br.ret.sptk.many rp ld4 r31 = [r32] ld4 r28 = [r29]

↓ ↓

st4 [r33] = r31 addl r28 = 01h, r28

↓ ↓

↓ st4 [r29] = r28

↓ ↓

br.ret.sptk.many rp

This works great until somebody does this:

int32_t SomeClass::Haha()
{
 return this->tryGetValue(&m_readCount);
}

or even this:

int32_t SomeClass::Hoho()
{
 return this->tryGetValue(&m_errno);
}

Oops.

Let’s look at Haha . Suppose that our initial conditions are m_errno = 0 , m_value = 42 ,

and m_readCount = 0 .

Original Optimized

local_errno = m_errno; // true

if (!m_errno) // true if (!m_errno) // true

readCount =
m_readCount;

// 0

*value =
m_value;

// m_readCount =
42

*value = m_value; // m_readCount =
42

6/12

m_readCount++; // m_readCount =
43

m_readCount = readCount
+ 1;

// m_readCount =
1

return m_errno; // 0 return errno; // 0

The original code copies the value before incrementing the read count. This means that if

the caller says that m_readCount is the output variable, the act of copying the value

modifies m_readCount . This modified value is then incremented. Our optimized version

does not take this case into account and sets m_readCount to the old value incremented by

1.

We were faked out by pointer aliasing!

(A similar disaster occurs in Hoho .)

Now, whether the behavior described above is intentional or desirable is not at issue here.

The C++ language specification requires that the original code result in the specified

behavior, so the compiler is required to honor it. Optimizations cannot alter the behavior of

standard-conforming code, even if that behavior seems strange to a human being reading it.

But we can still salvage this optimization by handling the aliasing case. The processor

contains support for aliasing detection via the ld.a instruction.

7/12

 // we are a leaf function, so no need to use "alloc" or to save rp.
 // on entry: r32 = this, r33 = value

 addl r30 = 08h, r32 // calculate &m_errno
 addl r29 = 04h, r32 ;; // calculate &m_readCount

 ld4 ret0 = [r30] ;; // load m_errno

 cmp4.eq p6, p7 = ret0, r0 // p6 = m_errno == 0, p7 = !p6

(p7) br.ret.sptk.many rp // return m_errno if there was an error

 ld4 r31 = [r32] // load m_value (at offset 0)
 ld4.a r28 = [r29] ;; // preload m_readCount

 addl r28 = 01h, r28 // calculate m_readCount + 1
 st4 [r33] = r31 // store m_value to *value

 chk.a.clr r28, recover ;; // recover from pointer aliasing
recovered:
 st4 [r29] = r28 ;; // store updated m_readCount

 br.ret.sptk.many rp // return

recover:
 ld4 r28 = [r29] ;; // reload m_readCount
 addl r28 = 01h, r28 // recalculate m_readCount + 1
 br recovered // recovery complete, resume mainline code

The ld.a instruction is the same as an ld instruction, but it also tells the processor that

this is an advanced load, and that the processor should stay on the lookout for any

instructions that write to any bytes accessed by the load instruction. When the value is finally

consumed, you perform a chk.a.clr to check whether the value you loaded is still valid. If

no instructions have written to the memory in the meantime, then great. But if the address

was written to, the processor will jump to the recovery code you provided. The recovery code

re-executes the load and any other follow-up calculations, then returns to the original

mainline code path.

The .clr completer tells the processor to stop monitoring that address. It clears the entry

from the Advanced Load Address Table, freeing it up for somebody else to use.

There is also a ld.c instruction which is equivalent to a chk.a that jumps to a reload and

then jumps back. In other words,

 ld.c.clr r1 = [r2]

is equivalent to

8/12

 chk.a.clr r1, recover
recovered:
 ...

recover:
 ld r1 = [r2]
 br recovered

but is much more compact and doesn’t take branch penalties. This is used if there is no

follow-up computation; you merely want to reload the value if it changed.

As with recovery from speculative loads, we can inline some of the mainline code into the

recovery code so that we don’t have to pad out the mainline code to get recovered to sit on

a bundle boundary. I didn’t bother doing it here; you can do it as an exercise.

The nice thing about processor support for pointer aliasing detection is that it can be done

across functions, something that cannot easily be done statically. Consider this function:

void accumulateTenTimes(void (*something)(int32_t), int32_t *victim)
{
int32_t total = 0;
for (int32_t i = 0; i < 10; i++) {
 total += something(*victim);
}
*victim = total;
}

int32_t negate(int32_t a) { return -a; }

int32_t value = 2;
accumulateTenTimes(negate, &value);
// result: value = -2 + -2 + -2 + ... + -2 = -20

int32_t sneaky_negate(int32_t a) { value2 /= 2; return -a; }
int32_t value2 = 2;
accumulateTenTimes(sneaky_negate, &value2);
// result: value2 = -2 + -1 + -0 + -0 + ... + -0 = -3

When compiling the accumulate Ten Times function, the compiler has no way of knowing

whether the something function will modify victim , so it must be conservative and

assume that it might, just in case we are in the sneaky_negate case.

Let’s assume that the compiler has done flow analysis and determined that the function

pointer passed to accumulate Ten Times is always within the same module, so it doesn’t

need to deal with gp . Since function descriptors are immutable, it can also enregister the

function address.

9/12

 // 2 input registers, 6 local registers, 1 output register
 alloc r34 = ar.pfs, 2, 6, 1, 0
 mov r35 = rp // save return address
 mov r36 = ar.lc // save loop counter
 or r37 = r0, r0 // total = 0
 ld8 r38 = [r32] // get the function address
 or r31 = 09h, r0 ;; // r31 = 9
 mov ar.lc = r31 // loop nine more times (ten total)
again:
 ld4 r39 = [r33] // load *victim for output
 mov b6 = r38 // move to branch register
 br.call.dptk.many rp = b6 ;; // call function in b6
 addl r37 = ret0, r37 // accumulate total
 br.cloop.sptk.few again ;; // loop 9 more times

 st4 [r33] = r37 // save the total

 mov ar.lc = r36 // restore loop counter
 mov rp = r35 // restore return address
 mov ar.pfs = r34 // restore stack frame
 br.ret.sptk.many rp // return

Note that at each iteration, we read *victim from memory because we aren’t sure whether

the something function modifies it. But with advanced loads, we can remove the memory

access from the loop.

 // 2 input registers, 7 local registers, 1 output register
 alloc r34 = ar.pfs, 2, 7, 1, 0
 mov r35 = rp // save return address
 mov r36 = ar.lc // save loop counter
 or r37 = r0, r0 // total = 0
 ld8 r38 = [r32] // get the function address
 or r31 = 09h, r0 ;; // r31 = 9
 mov ar.lc = r31 // loop nine more times (ten total)
 ld4.a r39 = [r33] // get the value of *victim
again:
 ld4.c.nc r39 = [r33] // reload *victim if necessary
 or r40 = r39, r0 // set *victim as the output parameter
 mov b6 = r38 // move to branch register
 br.call.dptk.many rp = b6 ;; // call function in b6
 addl r37 = ret0, r37 // accumulate total
 br.cloop.sptk.few again ;; // loop 9 more times

 invala.e r39 // stop tracking r39

 st4 [r33] = r37 // save the total

 mov ar.lc = r36 // restore loop counter
 mov rp = r35 // restore return address
 mov ar.pfs = r34 // restore stack frame
 br.ret.sptk.many rp // return

10/12

We perform an advanced load of *value in the hope that the callback function will not

modify it. This is true if the callback function is negate , but it will trigger reloads if the

accumulator function is sneaky_negate .

Note here that we use the .nc completer on the ld.c instruction. This stands for no clear

and tells the processor to keep tracking the address because we will be checking it again.

When the loop is over, we use invala.e to tell the processor, “Okay, you can stop tracking

it now.” This also shows how handy the ld.c instruction is. We can do the reload inline

rather than have to write separate recovery code and jumping out and back.

(Processor trivia: We do not need a stop after the ld4.c.nc . You are allowed to consume

the result of a check load in the same instruction group.)

In the case where the callback function does not modify value , the only memory accesses

performed by this function and the callback are loading the function address, loading the

initial value from *value , and storing the final value to *value . The loop body itself runs

without any memory access at all!

Going back to our original function, I noted that we could also add speculation to the mix. So

let’s do that. We’re going to speculate an advanced load!

 // we are a leaf function, so no need to use "alloc" or to save rp.
 // on entry: r32 = this, r33 = value

 ld4.sa r31 = [r32] // speculatively preload m_value (at offset
0)
 addl r30 = 08h, r32 // calculate &m_errno
 addl r29 = 04h, r32 ;; // calculate &m_readCount

 ld4.sa r28 = [r29] // speculatively preload m_readCount
 ld4 ret0 = [r30] ;; // load m_errno

 cmp4.eq p6, p7 = ret0, r0 // p6 = m_errno == 0, p7 = !p6

(p7) invala.e r31 // abandon the advanced load
(p7) invala.e r28 // abandon the advanced load
(p7) br.ret.sptk.many rp // return false if value not set

 ld4.c.clr r31 = [r32] // validate speculation and advanced load of
m_value
 st4 [r33] = r31 // store m_value to *value

 ld4.c.clr r28 = [r29] // validate speculation and advanced load of
m_readCount
 addl r28 = 01h, r28 ;; // calculate m_readCount + 1
 st4 [r29] = r28 // store updated m_readCount

 br.ret.sptk.many rp // return

11/12

To validate a speculative advanced load, you just need to do a ld.c . If the speculation

failed, then the advanced load also fails, so all we need to do is check the advanced load. and

the reload will raise the exception.

The dependency chain for this function is even shorter now that we were able to speculate the

case where there is no error. (Since you are allowed to consume an ld4.c in the same

instruction group, I combined the ld4.c and its consumption in a single box since they

occur within the same cycle.)

ld4.sa r31 = [r32] addl r30 = 08h, r32 addl r29 = 04h, r32

↓ ↓ ↓

↓ ld4 ret0 = [r30] ld4.sa r28 = [r29]

↓ ↓ ↓

↓ cmp4.eq p6, p7 = ret0, r0 ↓

↓ ↙ ↓ ↘ ↓

ld4.c st4 [r33] =
r31

invala.e
r31

invala.e
r28

br.ret
rp

ld4.c addl r28 =
01h, r28

↓ ↓

↓ st4 [r29] = r28

↓ ↓

br.ret.sptk.many rp

Aw, look at that pretty diagram. Control speculation and data speculation allowed us to run

three different operations in parallel even though they might have dependencies on each

other. The idea here is that if profiling suggests that the dependencies are rarely realized

(pointers are usually not aliased), you can use speculation to run the operations as if they had

no dependencies, and then use the check instructions to convert the speculated results to real

ones.

¹ Note the absence of a stop between the cmp4 and the br.ret . That’s because of a special

Itanium rule that says that a conditional branch is permitted to use a predicate register

calculated earlier within the same instruction group. (Normally, instructions within an

instruction group are not allowed to have dependencies among each other.) This allows a test

and jump to occur within the same cycle.

12/12

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

