
1/5

August 6, 2015

The Itanium processor, part 9: Counted loops and loop
pipelining

devblogs.microsoft.com/oldnewthing/20150806-00

Raymond Chen

There is a dedicated register named ar.lc for counted loops. The br.cloop instruction acts like

this:

 if (ar.lc != 0) { ar.lc = ar.lc - 1; goto branch; }

Consider this loop to increment every 32-bit integer in an array.

extern int array[2000];

void IncrementEachElement()
{
for (int i = 0; i < 2000; i++) {
 array[i]++;
}
}

This could be compiled as

 mov r30 = ar.lc // save original value of ar.lc
 addl r29 = gp, -205584 // calculate start of array
 addl r31 = r0, 1999 ;; // r31 = 1999
 mov ar.lc = r31 // loop 1999 times
again:
 ld4 r31 = [r29] ;; // load the next integer
 adds r31 = r31, 1 ;; // increment the value
 st4 [r29] = r31, 4 // store it and autoincrement
 br.cloop again ;; // do it 1999 more times
 mov ar.lc = r30 // restore ar.lc
 br.ret.sptk.many rp // return

Note that the ar.lc register is initialized to one fewer than the number of iterations desired.

That’s because it counts the number of times the br.cloop instruction will branch. Since we

used fall-through to initiate the loop, one of the times through the loop was already

performed, and we want br.cloop to branch only 1999 times.

https://devblogs.microsoft.com/oldnewthing/20150806-00/?p=91161

2/5

The ar.lc register must be preserved across calls, so if you intend to use it in your function,

you need to save its original value and restore it when done. (You also need to record in the

unwind table where you saved it, so it’s easier to do it up front; otherwise, you have to go to

the extra work of encoding how you shrink-wrapped the function.)

For the sake of illustration, let’s say that the CPU can fetch memory from cache in two cycles,

and each cycle it can issue one load and one store. (If the memory access is not in cache, it

takes basically forever, in which case it doesn’t really matter how we optimize the rest of the

code, so we may as well assume that all memory accesses are cache hits.) Each iteration of

the loop performs a fetch (two cycles), an addition (one cycle), then a store in parallel with a

conditional jump (one cycle), for a total of four cycles per iteration.

Let’s try to do better.

First, let’s simplify to the case where the array has only four elements. We could do it like

this:

 alloc r36 = ar.pfs, 0, 5, 0, 0 // set up frame
 addl r29 = gp, -205584 // calculate start of array
 addl r28 = r29, 0 ;; // put it in both r28 and r29

 ld4 r32 = [r29], 4 ;; // crazy stuff
 ld4 r33 = [r29], 4 ;;
 adds r32 = r32, 1
 ld4 r34 = [r29], 4 ;;
 st4 [r28] = r32, 4
 adds r33 = r33, 1
 ld4 r35 = [r29], 4 ;;
 st4 [r28] = r33, 4
 adds r34 = r34, 1 ;;
 st4 [r28] = r34, 4
 adds r35 = r35, 1 ;;
 st4 [r28] = r35, 4 ;;

 mov ar.pfs = r36
 br.ret.sptk.many rp // return

(In reality, we would reorder the instructions in order to match the templates better, but I’ll

leave them in this order for now.)

That is kind of hard to understand, so let me rewrite the crazy middle part like this, putting

all the instructions from an instruction group on one line, adding some separator lines, and

putting instructions into columns carefully chosen to highlight the structure of the code.

1 ld4 r32 =
[r29], 4

 ;;

http://www.overbyte.com.au/misc/Lesson3/CacheFun.html

3/5

2 ld4 r33 =
[r29], 4

 ;;

3 adds r32 =
r32, 1

 ld4 r34 =
[r29], 4

 ;;

4 st4 [r28] =
r32, 4

adds r33 =
r33, 1

 ld4 r35 =
[r29], 4

;;

5 st4 [r28] =
r33, 4

adds r34 =
r34, 1

 ;;

6 st4 [r28] =
r35, 4

adds r35 =
r35, 1

;;

7 st4 [r28] =
r35, 4

;;

The first thing to observe is that this sequence completes in just seven cycles, as opposed to

the 16 cycles of the original version. That’s over double the performance!

Notice that each column performs one iteration of the loop. Each column uses a different

register to do the calculation, and they share register r29 to hold the address of the next

value to read and r28 to hold the address of the next value to write. Each column also waits

two cycles after each read before consuming the result, thereby avoiding memory stalls.

The idea here is to run multiple iterations of the loop in parallel, but setting each one to begin

one cycle after the start of the previous iteration. Staggering the starts keeps us from

overloading the memory controller. (Otherwise, everybody would issue load requests in

cycle 1, and the memory controller would stall.)

Now, the Itanium has a lot of registers, but it doesn’t have 2000 of them. Fortunately, we

don’t need 2000 of them. Observe that starting at cycle 5, we can reuse register r32 because

the previous iteration doesn’t need it any more. So if we need to increment ten elements, we

can do it this way:

1 ld4 r32 =
[r29], 4

 ;;

2 ld4 r33 =
[r29], 4

 ;;

3 adds r32 =
r32, 1

 ld4 r34 =
[r29], 4

 ;;

4 st4 [r28] =
r32, 4

adds r33 =
r33, 1

 ld4 r35 =
[r29], 4

;;

4/5

5 ld4 r32 =
[r29], 4

st4 [r28] =
r33, 4

adds r34 =
r34, 1

 ;;

6 ld4 r33 =
[r29], 4

st4 [r28] =
r34, 4

adds r35 =
r35, 1

;;

7 adds r32 =
r32, 1

 ld4 r34 =
[r29], 4

st4 [r28] =
r35, 4

;;

8 st4 [r28] =
r32, 4

adds r33 =
r33, 1

 ld4 r35 =
[r29], 4

;;

9 ld4 r32 =
[r29], 4

st4 [r28] =
r33, 4

adds r34 =
r34, 1

 ;;

10 ld4 r33 =
[r29], 4

st4 [r28] =
r34, 4

adds r35 =
r35, 1

;;

11 adds r32 =
r32, 1

 st4 [r28] =
r35, 4

;;

12 st4 [r28] =
r32, 4

adds r33 =
r33, 1

 ;;

13 st4 [r28] =
r33, 4

 ;;

We incremented ten elements in 13 cycles instead of 40. In general, we can increment n

elements in n + 3 cycles instead of 4n. For large values of n this is a four-fold speed-up over

the original version.

The pattern above breaks down into three natural sections.

1 ld4 r32 =
[r29], 4

 ;; Warm-
up

2 ld4 r33 =
[r29], 4

 ;;

3 adds r32 =
r32, 1

 ld4 r34 =
[r29], 4

 ;;

4 st4 [r28]
= r32, 4

adds r33
= r33, 1

 ld4 r35 =
[r29], 4

;; Cruise

5 ld4 r32 =
[r29], 4

st4 [r28]
= r33, 4

adds r34
= r34, 1

 ;;

6 ld4 r33 =
[r29], 4

st4 [r28]
= r34, 4

adds r35
= r35, 1

;;

7 adds r32 =
r32, 1

 ld4 r34 =
[r29], 4

st4 [r28]
= r35, 4

;;

5/5

8 st4 [r28]
= r32, 4

adds r33
= r33, 1

 ld4 r35 =
[r29], 4

;;

9 ld4 r32 =
[r29], 4

st4 [r28]
= r33, 4

adds r34
= r34, 1

 ;;

10 ld4 r33 =
[r29], 4

st4 [r28]
= r34, 4

adds r35
= r35, 1

;;

11 adds r32 =
r32, 1

 st4 [r28]
= r35, 4

;; Cool-
down

12 st4 [r28]
= r32, 4

adds r33
= r33, 1

 ;;

13 st4 [r28]
= r33, 4

 ;;

The first three cycles comprise the warm-up phase (formally known as the prologue). At the

start, no registers are doing any work, but during the course of the warm-up phase, they get

into the act one at a time. At the end of the warm-up phase, all the registers are busy doing

work.

Most of the time is spent in the middle cruise phase (formally known as the kernel), wherein

all four registers are busy carrying out one of the iterations. Note that during every cycle of

the cruise phase, there is a load, an increment, and a store, with the registers taking turns

performing each of the operations.

The last three cycles are the cool-down phase (formally known as the epilogue), where the

registers start draining their last bits of work and no new work is started.

Okay, now that we understand how the above code works, we’re going to turn it on its side

next time. Stay tuned for the thrilling conclusion!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

