
1/3

August 18, 2015

If you are going to call Marshal.GetLastWin32Error, the
function whose error you’re retrieving had better have
SetLastError=true

devblogs.microsoft.com/oldnewthing/20150818-00

Raymond Chen

A customer reported that their p/invoke to a custom DLL was failing, and the error code

made no sense.

https://devblogs.microsoft.com/oldnewthing/20150818-00/?p=91791

2/3

// C#

using System;

using System.Runtime.InteropServices;

using System.Diagnostics;

class Program

{

 [DllImport("contoso.dll", CallingConvention=CallingConvention.Cdecl)]

 public static extern int Fribble();

 public static void Main()

 {

 Console.WriteLine("About to call Fribble");

 var result = Fribble();

 if (result >= 0) {

 Console.WriteLine("succeeded {0}", result);

 } else {

 Console.WriteLine("failed {0}, last error = {1}",

 result, Marshal.GetLastWin32Error());

 }

 }

}

// C++

int __cdecl Fribble()

{

HANDLE hEvent = OpenEvent(EVENT_MODIFY_STATE, FALSE,

 TEXT("FribbleEvent"));

if (hEvent == nullptr)

 return -1;

}

if (!SetEvent(hEvent)) {

 CloseHandle(hEvent);

 return -2;

}

CloseHandle(hEvent);

return 1;

}

The customer reported that their Fribble function was returning −1, indicating a failure to

open the event, but the error code returned by Marshal.GetLastWin32Error is 87, “The

parameter is incorrect.” But all of the parameters to OpenEvent look correct. Why are we

getting this strange error code?

My psychic powers tell me that if the customer had taken the time to troubleshoot their

problem by writing a C++ program that calls the Fribble function, GetLastError would

have returned the more reasonable error 2, meaning that the event does not exist.

http://blogs.msdn.com/b/oldnewthing/archive/2010/01/27/9953807.aspx

3/3

That’s because GetLastError is working fine. The last error code is 2.

The problem is with the p/invoke declaration.

The documentation for the Marshal.GetLastWin32Error function says as its very first line

Returns the error code returned by the last unmanaged function that was called using platform
invoke that has the DllImportAttribute.SetLastError flag set.

(Emphasis mine.)

This reminder about DllImportAttribute.SetLastError is repeated in the Remarks.

You can use this method to obtain error codes only if you apply the System.Runtime.Interop-
Services.DllImportAttribute to the method signature and set the SetLastError field to true.

Observe that the SetLastError field was not set in the p/invoke declaration. Therefore,

what you are actually getting when you call Marshal.GetLastWin32Error is whatever

error was lying around after the previous call to a p/invoke function that did specify Set‐

LastError = true .

Changing the p/invoke to

[DllImport("contoso.dll", SetLastError=true,

 CallingConvention=CallingConvention.Cdecl)]

public static extern int Fribble();

fixed the problem.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

