
1/2

August 19, 2015

If you are going to call Marshal.GetLastWin32Error, the
function whose error you’re retrieving had better be the
one called most recently

devblogs.microsoft.com/oldnewthing/20150819-00

Raymond Chen

Even if you remember to set Set Last Error=true in your p/invoke signature, you still have

to be careful with Marshal.Get Last Win32 Error because there is only one last-error code,

and it gets overwritten each time.

So let’s try this program:

using System;
using System.Runtime.InteropServices;

class Program
{
 [DllImport("user32.dll", SetLastError=true)]
 public static extern bool OpenIcon(IntPtr hwnd);

 public static void Main()
 {
 // Intentionally pass an invalid parameter.
 var result = OpenIcon(IntPtr.Zero);
 Console.WriteLine("result: {0}", result);
 Console.WriteLine("last error = {0}",
 Marshal.GetLastWin32Error());
 }
}

The expectation is that the call to Open Icon will fail, and the error code will be some form

of invalid parameter.

But when you run the program, it prints this:

result: False
last error = 0

Zero?

https://devblogs.microsoft.com/oldnewthing/20150819-00/?p=91781

2/2

Zero means “No error”. But the function failed. Where’s our error code? We printed the

result immediately after calling Open Icon . We didn’t call any other p/invoke functions. The

last-error code should still be there.

Oh wait, printing the result to the screen involves a function call.

That function call might itself do a p/invoke!

We have to call Marshal.Get Last Win32 Error immediately after calling Open Icon .

Nothing else can sneak in between.

using System;
using System.Runtime.InteropServices;

class Program
{
 [DllImport("user32.dll", SetLastError=true)]
 public static extern bool OpenIcon(IntPtr hwnd);

 public static void Main()
 {
 // Intentionally pass an invalid parameter.
 var result = OpenIcon(IntPtr.Zero);
 var lastError = Marshal.GetLastWin32Error();
 Console.WriteLine("result: {0}", result);
 Console.WriteLine("last error = {0}",
 lstError);
 }
}

Okay, now the program reports the error code as 1400: “Invalid window handle.”

This one was pretty straightforward, because the function call that modified the last-error

code was right there in front of us. But there are other ways that code can run which are more

subtle.

If you retrieve a property, the property retrieval may involve a p/invoke.

If you access a class that has a static constructor, the static constructor will secretly run

if this is the first time the class is used.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

