
1/2

September 4, 2015

Using an intermediate library to make the main library
retargetable

devblogs.microsoft.com/oldnewthing/20150904-00

Raymond Chen

A customer was developing a static library targetting both Windows XP Win32 applications

and universal Windows apps. (This was before Windows XP reached end-of-life.)

Our library uses critical sections, but unfortunately there is no version Initialize ‐
Critical Section that is available to both Windows XP Win32 applications and universal
Windows apps. Universal Windows apps must use Initialize Critical Section Ex , but
that function is not available to Windows XP Win32 applications. Is there a way to dynamically
target both Windows XP Win32 applications and universal Windows apps, pass WACK
validation, and still have one library?

We thought we could use Get Module Handle and Get Proc Address to detect which
platform we are one, but Get Module Handle is not allowed in universal Windows apps, so
we’re back where we started.

Are we stuck having two versions of our library, one for Windows XP Win32 applications and
one for universal Windows apps?

Runtime dynamic linking (Load Library , Get Proc Address) is not permitted in universal

Windows apps, which means that for universal Windows apps, you must have an entry for

Initialize Critical Section Ex in your import table. But if that function is in your input

table, then it won’t load on Windows XP.

(You might think that you could have a second library to be used by Windows XP clients that

implements the Initialize Critical Section Ex function. Unfortunately, you will run

afoul of dllimport.)

You are going to have to have separate libraries at some point, but you don’t have to have two

versions of your library. You could build your library to call, say, Contoso Initialize ‐

Critical Section , and have two helper libraries, one for Windows XP Win32 applications

and one for universal Windows apps, each of which implement the Contoso Initialize ‐

Critical Section function in a manner appropriate to the target.

https://devblogs.microsoft.com/oldnewthing/20150904-00/?p=91661
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/26/679044.aspx

2/2

In other words, people targeting Windows XP would link to ContosoCore.dll and

ContosoXPSupport.dll . People writing universal Windows apps would link to

ContosoCore.dll and ContosoStoreSupport.dll .

This approach has a few advantages:

It’s simple, works (because it’s so simple), and everybody understands it.

All the files in your core library need to be compiled only once.

The second clause pays off if your library is large, or if you need to add new operating system

targets.

Update: I guess I didn’t make it clear. My suggestion is that Contoso Core.dll link to the

nonexistent Contoso Support.dll . If your program targets Windows XP, then rename

Contoso XP Support.dll to Contoso Support.dll . If your program is a universal

Windows app, then rename Contoso Store Support.dll to Contoso Support.dll .

This technique also works with static libraries. You have a single Contoso Core.lib which

calls a Contoso Initialize Critical Section function. There are two implementations of

Contoso Initialize Critical Section , one in Contoso XP Support.lib and another in

Contoso Store Support.lib . Each application chooses which support library to link in.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

