
1/3

September 28, 2015

What happens to lost timer messages if I don’t process
them fast enough?

devblogs.microsoft.com/oldnewthing/20150928-00

Raymond Chen

Some time ago, I noted that if your WM_TIMER handler takes longer than the timer period,

your queue will not fill up with WM_TIMER messages. The WM_TIMER message is generated on

demand, and if your handler doesn’t check for messages, then there is no demand for timer

messages. But what happens when your thread finally starts processing messages again?

What happens to the timers that elapsed while you were busy? Do they accumulate?

Here’s a sketch of how timers work. (Note that the timers under discussion here are the

timers set by the SetTimer function.)

When a timer is created, it is initially not ready.

Every n milliseconds (where n is the period of the timer), the timer is marked ready. This is

done regardless of the state of the UI thread. Note that ready is a flag, not a counter. If the

timer is already ready, then it stays ready; there is no such thing as “double ready”. The

QS_TIMER flag is set on the queue state, indicating that there is now a pending timer for the

thread. This in turn may cause a function like GetMessage or MsgWaitForMultiple‐

Objects to wake up.

When the appropriate conditions are met (as discussed earlier), the window manager checks

whether there are any timers for the thread that are marked ready. If so, then the

corresponding WM_TIMER message is generated and the ready flag is cleared.

Let’s illustrate this with our scratch program. Make the following changes:

https://devblogs.microsoft.com/oldnewthing/20150928-00/?p=91501
http://blogs.msdn.com/b/oldnewthing/archive/2014/12/04/10577881.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/19/10249000.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/3

#include <strsafe.h>

DWORD g_tmStart;

void SquirtTime()

{

TCHAR sz[256];

StringCchPrintf(sz, 256, "%d\r\n", GetTickCount() - g_tmStart);

OutputDebugString(sz);

}

This adds a function that prints the number of milliseconds which have elapsed since

g_tmStart . Note that we use simple subtraction and rely on unsigned arithmetic to handle

timer rollover issues.

void CALLBACK OnTimer(HWND hwnd, UINT, UINT_PTR, DWORD)

{

SquirtTime();

}

Our timer tick handler merely prints the elapsed time to the debugger.

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_tmStart = GetTickCount();

SetTimer(hwnd, 1, 500, OnTimer);

Sleep(1750);

return TRUE;

}

Finally, we create a 500ms timer on our window, but we also intentionally stall the thread for

1750ms.

Can you predict the output of this program?

Here’s what I got when I ran the program:

1797

2000

2500

3000

3500

4000

4500

...

Let’s see if we can explain it.

Since the timer is set to fire at 500ms intervals, every 500ms, the timer gets marked ready.

3/3

At T = 500ms, the timer is marked ready.

At T = 1000ms, the timer is marked ready. This is redundant, since the timer is already

ready.

At T = 1500ms, the timer is marked ready. Again, this is redundant.

At T = 1750ms, the program finally wakes up from its Sleep and eventually gets

around to processing messages.

Hey look, there is a ready timer, so we generate a WM_TIMER message and clear the

ready flag.

At T = 1797ms, the timer message is processed.

The program returns to its message loop, where there are no further messages to

process, so it sits and waits.

At T = 2000ms, the timer is marked ready. This causes the GetMessage to wake up

generate a WM_TIMER message and clear the ready flag.

At T = 2000ms, the timer message is processed.

At T = 2500ms, the timer is marked ready. This causes the GetMessage to wake up

generate a WM_TIMER message and clear the ready flag.

At T = 2500ms, the timer message is processed.

And so on, with a new timer message every 500ms that is processed immediately.

Observe that when the program begins processing messages at T = 1750ms, it receives only

one timer message right away, even though three timer periods have elapsed.

I guess another way of looking at this is to think of your timer as setting a frame rate. If your

thread is busy when it’s time to render the next frame, then the next frame is late. And if your

thread is really busy, it may drop frames entirely.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

