
1/3

October 9, 2015

How does a shell namespace extension provide icons for
virtual items that track the standard icons set by the
user’s file associations?

devblogs.microsoft.com/oldnewthing/20151009-00

Raymond Chen

A customer asked, “What is the correct way to retrieve the icon associated with a file

extension? We are writing a shell namespace extension that holds virtual file content, and we

want to show the icon that would have been shown if the file were a physical file on disk

rather than a virtual one. We tried using SHGetFileInfo , expecting it to return the icon

location and index, but the szDisplayName comes out as a blank string. (See sample

program attached.) What’s the right way to get the location so we can return it in our own

GetUIObjectOf(IExtractIcon) handler?”

#include <windows.h>

#include <iostream>

int main()

{

SHFILEINFOW info;

::CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

::SHGetFileInfoW(L".txt", FILE_ATTRIBUTE_NORMAL,

 &info, sizeof(info),

 SHGFI_ICONLOCATION | SHGFI_USEFILEATTRIBUTES);

std::wcout << info.szDisplayName << std::endl;

std::wcout << info.iIcon << std::endl;

return 0;

}

The location is coming out blank because the file location returned is GIL_NOTFILENAME so

there is no file name to return.

But let’s look past the question to the problem. The problem is that you want to implement

IShellFolder::GetUIObjectOf(IExtractIcon) for your shell namespace extension.

Your plan is to create a custom implementation of IExtractIcon and tell it to report the

information you obtained from SHGetFileInfo . The catch is that this information is lossy

because IExtractIcon::GetIconLocation returns additional information that is not

captured by SHGetFileInfo .

https://devblogs.microsoft.com/oldnewthing/20151009-00/?p=91401
http://blogs.msdn.com/b/oldnewthing/archive/2004/06/01/145428.aspx

2/3

Avoid the loss of fidelity by removing the middle man. Just ask for the standard icon

extractor and return that.

We start with a helper function that takes its inspiration from GetUIObjectOfFile but

applies a little seasoning from CreateSimplePidl:

HRESULT GetUIObjectOfVirtualFile(HWND hwnd, LPCWSTR pszPath,

 REFIID riid, void **ppv)

{

 *ppv = nullptr;

 WIN32_FIND_DATAW fd = {};

 fd.dwFileAttributes = FILE_ATTRIBUTE_NORMAL;

 CComHeapPtr<ITEMIDLIST_ABSOLUTE> spidlSimple;

 HRESULT hr = CreateSimplePidl(&fd, pszPath, &spidlSimple);

 if (FAILED(hr)) return hr;

 CComPtr<IShellFolder> spsf;

 PCUITEMID_CHILD pidlChild;

 hr = SHBindToParent(spidlSimple, IID_PPV_ARGS(&spsf), &pidlChild);

 if (FAILED(hr)) return hr;

 return spsf->GetUIObjectOf(hwnd, 1, &pidlChild, riid, NULL, ppv);

}

This helper function is like GetUIObjectOfFile except that it uses a simple pidl to get the

UI object for a file that doesn’t actually exist.

We can use this function to get the icon extractor for an arbitrary file extension.

HRESULT GetIconExtractorForExtension(

 HWND hwnd,

 PCWSTR pszExtension,

 REFIID riid,

 void **ppv)

{

*ppv = nullptr;

wchar_t szPath[MAX_PATH];

HRESULT hr = StringCchPrintfW(szPath, ARRAYSIZE(szPath),

 L"C:\\a%ls", pszExtension);

if (FAILED(hr)) return hr;

return GetUIObjectOfVirtualFile(hwnd, szPath, riid, ppv);

}

and then use this function when handling the request for IExtractIcon .

http://blogs.msdn.com/b/oldnewthing/archive/2004/09/20/231739.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/03/10415778.aspx

3/3

if (interfaceId == IID_IExtractIconW ||

 interfaceId == IID_IExtractIconA)

{

 return GetIconExtractorForExtension(hwnd, L".txt", riid, ppv);

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

