
1/3

October 9, 2015

How does a shell namespace extension provide icons for
virtual items that track the standard icons set by the
user’s file associations?

devblogs.microsoft.com/oldnewthing/20151009-00

Raymond Chen

A customer asked, “What is the correct way to retrieve the icon associated with a file

extension? We are writing a shell namespace extension that holds virtual file content, and we

want to show the icon that would have been shown if the file were a physical file on disk

rather than a virtual one. We tried using SH Get File Info , expecting it to return the icon

location and index, but the szDisplay Name comes out as a blank string. (See sample

program attached.) What’s the right way to get the location so we can return it in our own

Get UI Object Of(IExtract Icon) handler?”

#include <windows.h>
#include <iostream>

int main()
{
SHFILEINFOW info;
::CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);
::SHGetFileInfoW(L".txt", FILE_ATTRIBUTE_NORMAL,
 &info, sizeof(info),
 SHGFI_ICONLOCATION | SHGFI_USEFILEATTRIBUTES);
std::wcout << info.szDisplayName << std::endl;
std::wcout << info.iIcon << std::endl;
return 0;
}

The location is coming out blank because the file location returned is GIL_NOT FILENAME so

there is no file name to return.

But let’s look past the question to the problem. The problem is that you want to implement

IShell Folder::Get UI Object Of(IExtract Icon) for your shell namespace extension.

Your plan is to create a custom implementation of IExtract Icon and tell it to report the

information you obtained from SH Get File Info . The catch is that this information is lossy

because IExtract Icon::Get Icon Location returns additional information that is not

captured by SH Get File Info .

https://devblogs.microsoft.com/oldnewthing/20151009-00/?p=91401
http://blogs.msdn.com/b/oldnewthing/archive/2004/06/01/145428.aspx

2/3

Avoid the loss of fidelity by removing the middle man. Just ask for the standard icon

extractor and return that.

We start with a helper function that takes its inspiration from Get UI Object Of File but

applies a little seasoning from Create Simple Pidl:

HRESULT GetUIObjectOfVirtualFile(HWND hwnd, LPCWSTR pszPath,
 REFIID riid, void **ppv)
{
 *ppv = nullptr;

 WIN32_FIND_DATAW fd = {};
 fd.dwFileAttributes = FILE_ATTRIBUTE_NORMAL;
 CComHeapPtr<ITEMIDLIST_ABSOLUTE> spidlSimple;
 HRESULT hr = CreateSimplePidl(&fd, pszPath, &spidlSimple);
 if (FAILED(hr)) return hr;

 CComPtr<IShellFolder> spsf;
 PCUITEMID_CHILD pidlChild;
 hr = SHBindToParent(spidlSimple, IID_PPV_ARGS(&spsf), &pidlChild);
 if (FAILED(hr)) return hr;

 return spsf->GetUIObjectOf(hwnd, 1, &pidlChild, riid, NULL, ppv);
}

This helper function is like Get UI Object Of File except that it uses a simple pidl to get the

UI object for a file that doesn’t actually exist.

We can use this function to get the icon extractor for an arbitrary file extension.

HRESULT GetIconExtractorForExtension(
 HWND hwnd,
 PCWSTR pszExtension,
 REFIID riid,
 void **ppv)
{
*ppv = nullptr;

wchar_t szPath[MAX_PATH];
HRESULT hr = StringCchPrintfW(szPath, ARRAYSIZE(szPath),
 L"C:\\a%ls", pszExtension);
if (FAILED(hr)) return hr;

return GetUIObjectOfVirtualFile(hwnd, szPath, riid, ppv);
}

and then use this function when handling the request for IExtract Icon .

http://blogs.msdn.com/b/oldnewthing/archive/2004/09/20/231739.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/03/10415778.aspx

3/3

if (interfaceId == IID_IExtractIconW ||
 interfaceId == IID_IExtractIconA)
{
 return GetIconExtractorForExtension(hwnd, L".txt", riid, ppv);
}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

