
1/4

November 4, 2015

Changing the conditions under which ReadFile produces
fewer bytes than requested

devblogs.microsoft.com/oldnewthing/20151104-00

Raymond Chen

In response to an article on hierarchical storage management, Karellen suggests that the

problem could be ameliorated by having the hierarchical storage manager keep the first 4KB

of the file online, thereby allowing programs that sniff the start of the file for metadata to

continue operating without triggering a recall. “The way that file read operations tend to

work (fread, read, and ReadFile), if an application opens a file and requests a large read, just

returning the first 4KB is a valid response.”

Premature short reads may technically be a valid response, but it won’t be the correct

response.

When your program reads from a file, do you retry partial reads? Be honest.

Suppose you want to read a 32-bit value from a file. You probably write this.

uint32_t value;

DWORD bytesRead;

if (ReadFile(file, &value, sizeof(value),

 &bytesRead, nullptr) &&

 bytesRead == sizeof(value)) {

 // Got the value - use it...

}

You probably don’t write this:

https://devblogs.microsoft.com/oldnewthing/20151104-00/?p=91961
http://blogs.msdn.com/b/oldnewthing/archive/2009/04/15/9549682.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/04/15/9549682.aspx#9551324

2/4

uint32_t value;

BYTE *nextRead = reinterpret_cast<BYTE*>&value;

DWORD bytesRemaining = sizeof(value);

while (bytesRemaining) {

 DWORD bytesRead;

 if (!ReadFile(file, &value, bytesRemaining,

 &bytesRead, nullptr)) return false;

 if (bytesRead == 0) break; // avoid infinite loop

 bytesRemaining -= bytesRead;

 nextRead += bytesRead;

}

if (bytesRemaining == 0) {

 // Got the value - use it...

}

Most programs assume that a short read from a disk file indicates that the end of the file has

been reached, or some other error has occurred. Consider, for example, this file parser:

3/4

struct CONTOSOFILEHEADER

{

 uint32_t magic;

 uint32_t version;

};

bool IsContosoFile(HANDLE file)

{

CONTOSOFILEHEADER header;

DWORD bytesRead;

if (!ReadFile(file, &header, sizeof(header),

 &bytesRead, nullptr)) {

 // Couldn't read the file - assume not a Contoso file.

 return false;

}

if (bytesRead != sizeof(header)) {

 // File doesn't hold a header - not a Contoso file.

 return false;

}

if (header.magic != CONTOSO_MAGIC) {

 // Does not start with magic number - not a Contoso file.

 return false;

}

if (header.version != CONTOSO_VERSION_1 &&

 header.version != CONTOSO_VERSION_2) {

 // Unsupported version - not a Contoso file.

 return false;

}

// Passed basic tests.

return true;

}

The problem is even worse if you use fread , because fread does not provide information

on how to resume a partial read. It reports only the total number of items read in full; you get

no information about how much progress was made in the items that were read only in part.

// Read 10 32-bit integers.

uint32_t flags[10];

auto itemsRead = fread(flags, sizeof(uint32_t), 10, fp);

if (itemsRead < 10) {

 if (!feof(fp) && !ferror(fp)) {

 // At this point, we have a short read.

 // We are now screwed.

 }

}

4/4

Since nobody is actually prepared for a short read to occur on disk files anywhere other than

the end of the file, you shouldn’t introduce a new failure mode that nobody can handle.

Because they won’t handle it.

And recall that the original question was in the context of displaying a file in a folder. Even if

you know that Hierarchical Storage Management is not involved, you still have to deal with

the cost of opening the file at all. If the folder is on a remote server where each I/O operation

has 500ms of latency, then enumerating the contents of a directory with 1000 files will take

over eight minutes. I suspect the user will have lost patience by then.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

