
1/2

December 21, 2015

Allocating page file space without allocating RAM
devblogs.microsoft.com/oldnewthing/20151221-00

Raymond Chen

The Windows Server 2003 Resource Kit comes with a tool called consume.exe , and one of

the things you can ask it to do is to suck up space in your swap file. If you run the program in

that mode, you see that it manages to do its job without consuming physical memory. (The

amount of Free Pages in Task Manager remains constant.) How is that possible?

Recall that memory allocation in user-mode is virtual (unless you are using the special

functions that specifically allocate physical memory). When you “allocate memory”, you are

really just allocating commit. Commit is the promise to produce memory upon access, but

until you actually access it, there is no requirement that memory be produced.

The consume.exe does its work by simply calling Virtual Alloc to commit pages, but

never accessing them. Since the program never accesses the pages, the system never needs to

find physical RAM to back them. It can just leave the pages committed in the page file.

Actually, it’s even more virtual than this: There is no specific page in the page file with your

name on it. The operating system only needs to make sure that it can produce the memory on

demand. Since you never wrote anything, the page starts out filled with zeros, and there is no

need to find a spot in the page file and physically fill it with zero. The memory manager can

just tag your commit with “If anybody asks for this memory, just give them a page filled with

zero.” Of course, if you actually write to the memory, then the memory manager needs to be

sure that there’s space in the page file to write your modifications, so that they can be read

back on demand.

(In theory, the operating system could check if the memory about to be written to the page

file is filled with zeroes, and if so, then don’t actually write anything but merely edit the tag

on the commit to say, “If anybody asks for this memory, just give them a page filled with

zero.” In practice, I don’t think this happens because the cost of doing this extra work for

every page doesn’t exceed the benefit of saved I/O on the rare cases it actually detects a page

that has been modified to be full of zeros.)

https://devblogs.microsoft.com/oldnewthing/20151221-00/?p=92681
http://blogs.msdn.com/b/oldnewthing/archive/2009/10/02/9902146.aspx

2/2

The catch for the consume.exe program is that it will eventually run out of virtual address

space. At the time consume.exe was written, this was probably not an issue because

computers didn’t have that much memory, and page files were typically less than 2GB. But

now, with 1GB of RAM being typical on entry-level machines, the prospect of exhausting the

virtual address space on a 32-bit system becomes more likely.

Today’s Little Program is a version of consume.exe that can soak up space in the page file

in excess of 2GB, even on 32-bit systems.

The trick is to allocate commit without consuming address space. We actually saw how to do

this a long time ago, when we discussed how a 32-bit application can allocate more than 4GB

of memory: Use Create File Mapping to create commit without mapping it.

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>

#define GIGABYTE (1024 * 1024 * 1024)

int __cdecl main(int argc, char **argv)
{
if (argc >= 2) {
 int gigabytes = atoi(argv[1]);
 for (int i = 0; i < gigabytes; i++) {
 printf("Allocating another gigabyte...\n");
 HANDLE h = CreateFileMapping(INVALID_HANDLE_VALUE, 0,
 PAGE_READWRITE, 0, GIGABYTE, NULL);
 if (h != NULL) printf("Allocated\n");
 Sleep(1000);
 }
 printf("Done. Sleeping 30 seconds before exiting.\n");
 Sleep(30 * 1000);
}
return 0;
}

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/07/06/9818299.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

