
1/2

January 20, 2016

So how bad is it that I’m calling RegOpenKey instead of
RegOpenKeyEx?

devblogs.microsoft.com/oldnewthing/20160120-00

Raymond Chen

A customer had some code that called the Reg Open Key function and was concerned by the

remark in MSDN:

Note This function is provided only for compatibility with 16-bit versions of Windows.
Applications should use the RegOpenKeyEx function.

What are the dire consequences of using this old function instead of the new one?

In general, not much.

If you call Reg Open Key , then some compatibility stuff kicks in, and then it goes ahead and

behaves as if you had called Reg Open Key Ex .

In the specific case of Reg Open Key , the compatibility stuff is mentioned in the parameter

documentation of Reg Open Key :

lpSubKey: If this parameter is NULL or a pointer to an empty string, the function returns the
same handle that was passed in.

This is different from Reg Open Key Ex , which always returns a new key. It means that if you

pass NULL as the lpSub Key , then the returned registry key is the same as the one that you

passed in, and therefore it does not create a new obligation to call Reg Close Key . In other

words, this code has a potential bug:

void DoSomething(HKEY hkey, PCSTR subkeyName)
{
 HKEY subkey;
 if (RegOpenKey(hkey, subkeyName, &subkey) == ERROR_SUCCESS) {
 // do something
 RegCloseKey(subkey);
 }
}

https://devblogs.microsoft.com/oldnewthing/20160120-00/?p=92892

2/2

The bug occurs if subkeyName is NULL or "" . In that case, the special 16-bit compatibility

behavior kicks in, and subkey is set to a copy of hkey . This means that when you do Reg ‐

Close Key(subkey) , you are closing the original hkey , and the caller will probably be

rather upset that you closed a key out from under it.

If you know that subkeyName is never NULL or "" , then you can safely close the key.

Otherwise, you either need to check against this special case or (better) just switch to Reg ‐

Open Key Ex so you don’t have to deal with the special case in the first place.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2008/01/17/7137438.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

