
1/3

January 22, 2016

If I’m going to store a SID in a file, should I store the
string form or the binary form?

devblogs.microsoft.com/oldnewthing/20160122-00

Raymond Chen

A customer needed to save some user SIDs into a file and wanted guidance on whether to use

string format or binary format.

Here are some pros and cons.

String format: To save the SID, use the Convert Sid To String Sid  function, then save the

string to the file. To load the SID, read the string from the file, then call Convert String Sid ‐

To Sid . The conversion may fail if the string is corrupted (either accidentally or maliciously).

Pro: Hard to get wrong. The heavy lifting is done by the two helper functions. In

particular a corrupted string SID will be detected by Convert String Sid To Sid .

Pro: Strings are well-known quantities. You probably already have code to load and

save strings. They are also easy to see in memory dumps or in file viewers.

Con: Takes up more space. The string format is larger than the binary format.

Con: The conversion cost can add up if you have to do it a lot.

Worst-case size is large: S-255-281474976710655-4294967295-4294967295-

4294967295-4294967295-4294967295-4294967295-4294967295-4294967295-

4294967295-4294967295-4294967295-4294967295-4294967295-4294967295-

4294967295 = 188 characters, if you also include the null terminator.

Binary format: To save the SID, use the Get Length Sid  function, then save the raw bytes to

the file. To load the SID, read the bytes from the file, then validate the SID to ensure it was

not corrupted (either accidentally or maliciously).

Cons: Validating a SID is tricky. (Details below.) If you mess up, you may have a

security vulnerability.

Cons: Binary format is harder to spot in a memory dump or in a file viewer.

Pro: Takes up less space.

Worst-case size is SECURITY_MAX_SID_SIZE  = 68 bytes, so you might even just

allocate a fixed buffer for the SID and avoid the variable-length problem.

https://devblogs.microsoft.com/oldnewthing/20160122-00/?p=92913


2/3

The tricky part is validating that a chunk of memory is a valid SID.

You might think that the Is Valid Sid  function would do that for you, but it can’t because

the function doesn’t have a cbSize  parameter, so it cannot validate that the purported SID

fits inside the buffer. The Is Valid Sid  function does logical validation, not physical

validation. (It assumes that the memory is formatted like a SID, and it’s checking whether the

formatting is legal.)

Therefore, you have to do the length validation yourself, and then let Is Valid Sid  do the

semantic validation only after you have verified that the length is correct.

BOOL IsValidUntrustedSid(PSID psid, size_t cbSize) 
{ 
   // First make sure the SID is at least the minimum size. 
   // This ensures that we can read the revision and subauthority 
   // count. 
   if (cbSize < SECURITY_SID_SIZE(0)) return FALSE; 

   // Now that we know the header is readable, we can calculate 
   // the length the SID claims to be and make sure it is actually 
   // that length. 
   if (cbSize != GetLengthSid(psid)) return FALSE; 

   // Now that we know the entire memory block is the right size, 
   // we can use IsValidSid. 
   return IsValidSid(psid); 
} 

Using strings is more convenient, and as long as the conversion isn’t a bottleneck, and the

disk space is not an issue, it would probably be a more convenient choice for a persistence

format.

Note that the Convert String Sid To Sid  function parses abbreviations for well-known SIDs.

For example, you can pass BA and out will come the Builtin Administrators group. If you

want to block that, you can first check that the string being converted begins with S-.

On the other hand, the security people tell me that defending against shorthand SIDs like BA

isn’t all that interesting. Since the attacker controls the string, they could just use the raw

format S-1-5-32-544 instead. Some shorthand SIDs expand to include the domain SID.

For example EA expands to S-1-5-21-X-519, where X is the domain RID. Even if you

blocked the shorthand SID, the attacker could still pass the full string S-1-5-21-X-519.

(From a security-theoretical point of view, the SID for the domain is not considered sensitive

data. You should assume that attackers already know your domain SID.)

But wait, we got all distracted with answering the question and forgot to solve the problem.



3/3

In general, it is rare to save just the SID all by itself. Usually a SID is part of a security

descriptor, so you should be saving the entire security descriptor. (We saw this some time ago

when we discussed how the SID history is used when a user’s SID changes.)

Raymond Chen

Follow

 

 

http://blogs.msdn.com/b/oldnewthing/archive/2014/11/28/10576639.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

