
1/3

January 27, 2016

Why does CryptDestroyHash crash, but only sometimes?
devblogs.microsoft.com/oldnewthing/20160127-00

Raymond Chen

A customer was having a problem with the cryptographic hashing functions. They reported

that their function ran successfully most of the time, but once in a while, it crashed at the call

to Crypt Destroy Hash :

https://devblogs.microsoft.com/oldnewthing/20160127-00/?p=92934

2/3

bool SomethingSomething(BYTE *buffer, int bufferSize)
{
 bool succeeded = true;
 HCRYPTPROV provider = 0;
 HCRYPTHASH hash = 0;

 if (!CryptAcquireContext(&provider, NULL, NULL,
 PROV_RSA_FULL, CRYPT_VERIFYCONTEXT) ||
 !CryptCreateHash(provider, CALG_MD5, 0, 0, &hash))
 {
 succeeded = false;
 goto Exit;
 }

 BYTE hashResult[16]; // MD5 hash is 16 bytes
 DWORD hashResultSize = sizeof(hashResult);

 if (!CryptHashData(hash, buffer, bufferSize, 0) ||
 !CryptGetHashParam(hash, HP_HASHVAL, hashResult,
 &hashResultSize, 0)) {
 succeeded = false;
 goto Exit;
 }

 DoSomethingWith(hashResult); // some business logic

 if (provider) {
 CryptReleaseContext(provider, 0);
 }

 if (hash) {
 CryptDestroyHash(hash);
 }

Exit:

 return succeeded;
}

The reason for the crash is straightforward. As noted in the documentation, you must call

Crypt Destroy Hash before Crypt Release Context. (The technical reason for this is that each

hash has a reference back to the context, so if you destroy the context, you leave the hash

with a dangling pointer.)

This was a relatively straightforward consult. A simple programming error. The customer

thanked us for identifying the problem, but then followed up with “But why is it happening

only rarely? Shouldn’t it crash all the time?”

Remember that when you break the rules, the behavior is undefined, and one valid

manifestion of undefined behavior is “Everything seems to work okay.”

https://msdn.microsoft.com/en-us/library/windows/desktop/aa380268(v=vs.85).aspx

3/3

You may have noticed some other problems with the code provided.

If anything goes wrong, the calls to Crypt Destroy Hash and Crypt Release Context

are skipped, which means that the code leaks a hash and a context. The Exit label

should be moved to just in front of the if (provider) .

Setting succeeded = true and then manually setting it to false when something

goes wrong strikes me as a high-risk proposition. If somebody adds code to the function

and does a goto Exit; without also setting succeeded = false; , the function will

falsely report success. I prefer to fail safe and initialize succeeded = false; , and set

it to true only after I am sure that the function succeeded.

Using RAII would have solved both the order-of-destruction problem and the memory leaks.

bool SomethingSomething(BYTE *buffer, int bufferSize)
{
 // assuming suitable definitions for CryptProv and CryptHash
 CryptProv provider(NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
 if (!provider) return false;
 CryptHash hash(provider.get(), CALG_MD5, 0, 0);
 if (!hash) return false;

 BYTE hashResult[16]; // MD5 hash is 16 bytes
 DWORD hashResultSize = sizeof(hashResult);

 if (!CryptHashData(hash.get(), buffer, bufferSize, 0) ||
 !CryptGetHashParam(hash.get(), HP_HASHVAL, hashResult,
 &hashResultSize, 0)) {
 return false;
 }

 DoSomethingWith(hashResult); // some business logic

 return true;
}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

