
1/5

February 12, 2016

We batched up our COM requests and return a single
stream of results, but the performance is still slow

devblogs.microsoft.com/oldnewthing/20160212-00

Raymond Chen

A customer had a performance problem with an interface that connected to a service: The

design was too chatty. (“Chatty” is a technical term that means “Too much time is spent

communicating back and forth, often at the expense of actual work.”) The original design

went like this:

// All error checking deleted for expository purposes.
void
GetIdsAndNamesOfEverythingInContainer(IContainer* container)
{
 CComPtr<IIEnumItem> enumerator;
 container->GetEnumerator(&enumerator);
 for (CComPtr<IItem> item;
 enumerator->Next(&item) == S_OK;
 item.Release()) {
 UINT id;
 item->GetId(&id);
 CComHeapPtr<wchar_t> name;
 item->GetName(&name);
 AddToUI(id, name);
 }
}

If there are 10,000 items, then the number of trips to the server comes out to

Line Calls to server

Get Enumerator 1

Next 10,001

Get Id 10,000

Get Name 10,000

item->Release 10,000

https://devblogs.microsoft.com/oldnewthing/20160212-00/?p=93013

2/5

enumerator->Release 1

Total 40,003

If every call to the server takes one millisecond to complete, that’s forty seconds spent

collecting the IDs and names of all the items. (In this particular case, the server was local, but

the high level of chattiness made the problem noticeable even for a local server.)

They reduced the chattiness by adding a special Get Ids And Names Of All Children method

to perform a bulk operation. On the server side, it collects all the information and serializes it

into a stream, then it returns the stream to the client. The client can then deserialize the data

from the stream. Something like this:

http://blogs.msdn.com/b/oldnewthing/archive/2006/04/07/570801.aspx

3/5

// All error checking deleted for expository purposes.
void
GetIdsAndNamesOfEverythingInContainer(IContainer* container)
{
 // Issue the bulk request for the IDs and names of all children.
 CComPtr<IIStream> stream;
 container->GetIdsAndNamesOfAllChildren(&stream);

 // Now parse out the results.

 // First thing in the stream is the number of items.
 ULONG bytesRead;
 UINT count;
 stream->Read(&count, sizeof(count), &bytesRead);

 // For each item, read the ID and name
 for (UINT i = 0; i < count; i++) {
 UINT id;
 stream->Read(&id, sizeof(id), &bytesRead);

 // The string is preceded by a character count.
 UINT length;
 stream->Read(&length, sizeof(length), &bytesRead);

 // Yes, there is an integer overflow here - like I said,
 // I removed error checking for expository purposes.
 UINT byteLength = (length + 1) * sizeof(wchar_t);
 CComHeapPtr<wchar_t> name(CoTaskMemAlloc(byteLength));
 ZeroMemory(name, byteLength);

 stream->Read(name.m_pData, byteLength, &bytesRead);

 AddToUI(id, name);
 }
}

But the operation was still slow.

Let’s study how chatty this new design is:

Line Calls to server

Get Ids And Names 1

IStream::Read for count 1

IStream::Read for Id 10,000

IStream::Read for length 10,000

4/5

IStream::Read for string 10,000

IStream::Release 1

Total 30,003

It’s still ridiculously chatty! (We traded calls to Next and Release for a single call to get

the length in the inner loop, but the other calls are still there.)

The problem is that the stream is marshaled by reference. When the COM marshaler returns

the stream, it returns a proxy that talks back to the stream on the server. COM doesn’t have

any special knowledge about how you’re using the stream. If you issue a read on the stream,

COM marshal the read call back to the original object so that it can perform the read, which

may consist of generating data on the fly or calling out to other objects, and it will certainly

update the position of the stream pointer. Or maybe the stream on the server is constantly

changing, so the read needs to retrieve the current data in the stream, even if it changed after

the call to Get Ids And Names Of All Children returned.

The solution here is to bring domain-specific knowledge to the table. We know that the

stream being returned is immutable, and it’s not being shared with anybody. Indeed, once

the server generates the output stream and returns it to the client, the server throws the

stream away! What we want to happen is to transfer the contents of the stream to the client,

so that the client gets a clone of the stream. Once that’s done, all the stream operations on the

client can be performed without having to talk back to the server.

One solution is to make the stream marshal by value by implementing IMarshal and

providing a custom marshaler. Marshaling by value is common for immutable objects,

because you can just transfer the object’s state to the client, and then you’re done. The client

can talk to its local copy of the object instead of having to go back to the server all the time.

Another solution is to make the marshaling by value explicit by returning a block of memory

rather than a COM object. Annotating your interface to indicate this is rather tricky, using the

wacky size_is(, ...) syntax, where there is nothing between the open parenthesis and the

comma. Once the client gets the raw buffer, it can parse the buffer directly, or it can create an

IStream wrapper around it. (You might choose to create an IStream wrapper so that you

minimize change to code that you’ve already spent time writing and debugging.)

Here’s the revised table once we marshal the buffer by value, so that all of the IStream

operations can be performed on the client side.

http://blogs.msdn.com/b/oldnewthing/archive/2009/09/23/9898230.aspx

5/5

Line Calls to server

Get Ids And Names 1

IStream::Read for count 0

IStream::Read for Id 0

IStream::Read for length 0

IStream::Read for string 0

IStream::Release 0

Total 1

Bonus reading: Larry Osterman explains some of the nuances of size_is and

length_is .

Update: Math is hard. Let’s go shopping.

Raymond Chen

Follow

http://blogs.msdn.com/b/larryosterman/archive/2010/05/26/what-does-size-is-mean-in-an-idl-file.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

