
1/2

February 19, 2016

When I try to calculate a performance counter manually,
the answer is off by a factor of 100

devblogs.microsoft.com/oldnewthing/20160219-00

Raymond Chen

A customer was having difficulty calculating a performance counter manually. According to

the formula in the documentation, performance counters that are of type

PERF_PRECISION_100NS_TIMER  should be calculated as (N₁−N₀)/(D₁−D₀). But when we do

that, the results we get are a factor of 100 smaller than the values reported by PerfMon. Are

we expected to multiply the result by 100?

Let’s take a step back and look at the various types of performance counters.

One general category is the counter that simply reports an instantaneous value. You ask for

the amount of free memory, you get the amount of free memory at the moment you ask.

Another is a counter that accumulates a value over time. You ask for the number of bytes

written to disk, and you get the number of bytes written to disk since the performance

counter started keeping track. To extract something more useful like “bytes written to disk

per second”, you are expected to read the value, wait one second, then read it again, and then

subtract. That gives the number of bytes written in the period of time that elapsed between

the first and second reading.

If you want to report “bytes written per second” over a different period of time, you read the

value, wait a little while, then read the value again; then you subtract the two readings and

divide by the amount of time that elapsed between the two readings. Fancy math people

might say that you are expected to differentiate over time, because what you are calculating

is a derivative: (f (a + h) − f (a))/h.

For example, suppose you want to report “bytes written per second”, but update the value ten

times per second. You would read the value, wait 0.1s, then read the value again. Subtract the

two readings to determine the number of bytes written during the 0.1s interval. To convert to

this to bytes written per second, divide by 0.1s.

Via dimensional analysis: Bytes read ÷ seconds elapsed = bytes read per second.

https://devblogs.microsoft.com/oldnewthing/20160219-00/?p=93052
https://msdn.microsoft.com/en-us/library/ms803979.aspx


2/2

A special case of the accumulated value is the temporal accumlated value. These are values

that indicate how much time was spent performing some activity. If you subtract the two

readings, then divide by the time between readings, you determine what fraction of the time

was spent performing that activity.

For example, “CPU idle time” accumulates over time. To find out how idle the machine was

in the past second, you read the idle time, wait one second, then read the idle time again.

Subtract to determine the amount of time spent idle during the past second. And if you want

to measure over a larger or smaller interval, you divide by the amount of time that elapsed

between the readings.

Many of the accumulated values actually report two values: The accumulated value and a

timestamp. The timestamp records the internal time at which the accumulated value was

obtained. This is important for two reasons: For one thing, it takes time to read the counter,

and you don’t want that time to skew your calculations. But more important is that your code

to wait exactly one second between readings can have latency or wobble, either because that

is in the nature of the timer you chose, or because something happened outside your control,

such as getting pre-empted by a hardware interrupt or taking a page fault. For high-speed

counters, these delays can create large swings in calculated values. Using the timestamps

reported by the counter ensures that your calculations are accurate.

Okay, so now the question: Why is the calculation off by a factor of 100?

The PerfMon program assumes that a differentiated accumulated time value represents a

percentage. If you are differentiating a time value, then you are calculating the ratio of two

time values, which is dimensionless. “During the 1-second interval that just ended, what

fraction of the time was spent doing X?” This naturally lends itself to being expressed as a

percentage rather than a direct ratio. It’s easier to understand “X is happening 15.3% of the

time” rather than “X is happening 0.153 of the time.”

The customer explained that they were interested in the total amount rather than an average

over time. In which case, they can take the reading at the end and the reading at the start,

subtract the two values, and don’t divide by the time that elapsed. That will tell you that the

CPU was idle for N seconds between the two readings. I’m not sure what use that is to them

without knowing how far apart the two readings are, but if that’s what you want, that’s how

you get it.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

