
1/2

March 31, 2016

Why are there four functions for parsing strings into
GUIDs, and why are they in three different DLLs?

devblogs.microsoft.com/oldnewthing/20160331-00

Raymond Chen

Some time ago, we discussed the differences among various functions that take a string and

produce a GUID-like thing. Let’s look at that table.

Function Exported by

Uuid From String rpcrt4.dll

IID From String ole32.dll

CLSID From String ole32.dll

GUID From String shell32.dll

Why are there four such functions, and more importantly, why are they in three different

DLLs?

As you might expect, the answer comes from history.

The first two functions on the scene are the ones in the middle of the table. IID From String

and CLSID From String come from the original 32-bit OLE library. They differ in their

intended use. The second one is for parsing strings that represent OLE objects. It so happens

that you are allowed to do this either by specifying the raw GUID as a string, or by specifying

the programmatic ID for the class. That’s why CLSID From String does the extra work of

looking in HKEY_CLASSES_ROOT to convert the string to a CLSID.

On the other hand, interface IDs have no such alternate notation, so the IID From String

function accepts only stringized GUIDs.

At this point in time, OLE was a monolithic DLL. It then became apparent that the

monolithic OLE DLL was really doing several things: It managed document linking and

embedding (OLE). As part of that work, it also had to manage the component object model

https://devblogs.microsoft.com/oldnewthing/20160331-00/?p=93231
http://blogs.msdn.com/b/oldnewthing/archive/2015/10/15/10647906.aspx

2/2

(COM). And in the case where the components are in different processes, it needs to perform

remote procedure calls (RPC).

The remote procedure call functionality was useful in its own right, so the OLE team spun it

off into its own library, and OLE would be one of many clients of the new library. That new

library was called RPCRT4, which I’m guessing stands for “remote procedure call runtime,

fourth attempt” (?).

The remote procedure call library therefore had to have its own parser for stringized GUIDs;

it couldn’t call up into OLE because that would be a layering violation. (RPC is the low-level

component and OLE is the high-level component.) And besides, the components which were

using the raw RPC layer were doing so because they explicitly didn’t want OLE. Having the

string parsing function in OLE would force components to load OLE, which ruined the point

of splitting RPC into its own library. For want a string-parsing function the kingdom was lost.

The last function on the scene is GUID From String . This was written by the shell team back

in the days of OLE Chicken. (not to be confused with Chicken Ole). The shell needed only a

limited subset of OLE in order to function. To avoid the performance impact of loading all of

OLE (and allocating a whopping 32KB of memory), it contained a miniature copy of OLE;

just enough to let the shell do what it needed. And one of the things in that miniature copy of

OLE was a function to parse strings into GUIDs.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/07/05/173226.aspx
http://allrecipes.com/recipe/234180/chicken-ole/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

