
1/2

April 4, 2016

Getting MS-DOS games to run on Windows 95: Working
around the iretd problem

devblogs.microsoft.com/oldnewthing/20160404-00

Raymond Chen

Today’s story is the story of Speed Racer in the Challenge of Racer X. Here goes. The really

scary thing is that I still remember the details.

To this day, I can’t bear to listen to the Speed Racer theme song because I spent over a week

debugging why the program froze up right after the title sequence music. The crashes were

completely nonsensical and random.

Windows 95 uses the iretd instruction to return from the kernel back to the application.

After days of frustrating head-scratching, I eventually discovered that if you use the

instruction to return from the kernel back to the application, and the application is running

32-bit protected-mode code on a 16-bit stack, then only the bottom 16 bits of the esp

register are updated by the iretd instruction. The upper 16 bits remain unchanged and

continue to hold the value they had while you were in kernel mode. This behavior doesn’t

appear to be documented anywhere in Intel’s reference books.¹

The effect of this is that 32-bit protected-mode code running on a 16-bit stack will observe

that the upper 16 bits of the esp register are spontaneously corrupted randomly. (Sound

familiar?) Unfortunately, Speed Racer was counting on the upper 16 bits of the esp register

remaining zero.

To fix this, I had to counter insanity with more insanity.

At the last moment before restoring all the general purpose registers and executing the

iretd instruction, Windows 95 does a check to see whether the troublesome scenario is

about to occur. If so, the kernel sets up a temporary stack selector whose base linear address

matches the high 16 bits of the kernel esp register, then switches to that stack while

simultaneously zeroing out the high 16 bits of its own esp register. This double-switch

rewrites the ss:esp value such that it points to the same memory, but shuffles the bits

around to arrange for the high 16 bits of esp to be zero. In other words, it rewrote SS:ESP

= 00000000 + xxxxyyyy as SS:ESP = xxxx0000 + 0000yyyy . (Sound familiar?)

https://devblogs.microsoft.com/oldnewthing/20160404-00/?p=93261
https://archive.org/details/msdos_Speed_Racer_in_The_Challenge_of_Racer_X_1992
https://technet.microsoft.com/en-us/magazine/jj203546.aspx
https://devblogs.microsoft.com/oldnewthing/

2/2

At this point, the kernel is set up to restore the general purpose registers and perform the

iretd . This returns control back to the application with the high 16 bits of the esp

register set to zero, as the application expects.

Now, this may seem like an awful lot of work just to get a single game to work, and it’s not

like Speed Racer was a blockbuster game like DOOM. However, this particular problem was

not intrinsic to Speed Racer. Rather, it was a problem in the client-side library code that

came with the MS-DOS extender they were using, and that MS-DOS extender was one of the

major players in the MS-DOS extender market, so fixing this issue actually fixed a lot of

programs. It’s just that Speed Racer was the first one discovered to exhibit the problem, so it

was the one I ended up debugging.

¹Maybe I’m missing it. You tell me if you see it in there. The pseudocode at the RETURN-TO-

OUTER-PRIVILEGE-LEVEL label talks about raising an exception if the stack doesn’t have at

least 8 bytes of data in it, but it doesn’t appear to discuss what happens to the esp register.

The discussion says “If the return is to another privilege level, the IRET instruction also pops

the stack pointer and SS from the stack,” but it doesn’t mention what happens if the

destination stack pointer is a different size from the current stack pointer.

Raymond Chen

Follow

http://tptp.cc/mirrors/siyobik.info/instruction/IRET%252FIRETD.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

