
1/3

April 8, 2016

Why does FindExecutable behave erratically for files with
extensions longer than three characters? (And what can
you do about it?)

devblogs.microsoft.com/oldnewthing/20160408-00

Raymond Chen

The Find Executable function looks up the executable responsible for launching a

particular file. This is a dubious undertaking, because it assumes that the thing that launches

a file is an executable. There are other things capable of launching a file, such as a DDE

command, a context menu shell extension, or a custom drop target. What should Find ‐

Executable return in those cases?

Okay, so if Find Executable is based upon a flawed assumption, why does it even exist?

Because at the time it was originally introduced, the assumption was valid.

The Find Executable function comes from 16-bit Windows, and back in those days, there

were no context menu shell extensions or custom drop targets. (There was DDE, but that’s

okay, because programs still have to register an executable to be used in the fallback case

when nobody responds to the DDE message.)

In the port to 32-bit Windows, the Find Executable function remains, but it works only in

the case where files were registered in the 16-bit way; that is, with a command line

executable. It so happens that most file types are still registered that way, so the Find ‐

Executable function basically still works.

Since the Find Executable function is basically a throwback to 16-bit Windows, there is

another attempt to accommodate the 16-bit world that is not as obvious: The Find ‐

Executable function takes the thing you pass and converts it into a short file name before

trying to look up the handler.

The effect of the conversion to a short file name depends on a bunch of things.

If the volume does not have short file name autogeneration enabled, then the conversion to a

short file name has no effect. But if the volume does have short file name autogeneration

enabled, then the net effect is that the extension gets truncated to three characters.

https://devblogs.microsoft.com/oldnewthing/20160408-00/?p=93274
http://blogs.msdn.com/b/oldnewthing/archive/2007/02/26/1763683.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/09/20/231739.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/05/03/10006065.aspx

2/3

foo.abcde becomes foo~1.abc . And then Find Executable looks up and returns the

handler for the .abc extension instead of the .abcde extension.

Back in the days before long file names, all file extensions were truncated to 3 characters. if

you asked for foo.abcde, you got foo.abc. The Find Executable function tries to maintain

this compatibility with older applications. Newer applications shouldn’t be using Find ‐

Executable anyway, seeing as the handler for a file type may not even be an executable.

I accept that the concept of finding the executable associated with a file is flawed

in the face of handlers that do not take the form of an executable, but I still want

to get the executable associated with a file, if possible, with the understanding

that the answer may be incorrect.

You can use the Assoc Query String function to get the executable associated with the

default verb of a file extension, if one exists.

HRESULT FindExecutableAssociatedWithFileExtension(
 In PCWSTR extension,
 Out PWSTR resultBuffer,
 In DWORD bufferLength)
{
return AssocQueryString(ASSOCF_INIT_INGORENUNKNOWN,
 ASSOCSTR_EXECUTABLE,
 fullPath,
 nullptr,
 resultBuffer,
 &bufferLength);
}

The ASSOCF_INIT_UNKNOWN flag says that if the file extension has no handler, don’t return

the “Open unknown file” handler.

This is not exactly the same as Find Executable because that function has special-case code

for when you pass in, for example, excel.exe . In those cases, the Find Executable

function just returns the file itself, since executables are their own handlers.

The ASSOCF_INIT_UNKNOWN flag was added in Windows 7. What do you do for older

versions of Windows? Well, you’re in luck. Older versions of Windows didn’t have the “Open

unknown file” handler, so if there is no registered handler, the call will simply fail. (Indeed,

the introduction of the “Open unknown file” handler is what most likely prompted the

creation of the ASSOCF_INIT_UNKNOWN flag in the first place.) As a second mark of good

fortune, the flag is ignored by older versions of Windows, so you can go ahead and pass the

flag unconditionally: On versions of Windows that support it, it does what you want. And on

versions of Windows that don’t support it, they already behave the way you want by default.

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2007/12/17/6785519.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

