
1/3

May 12, 2016

How come a duplicated token doesn’t behave identically
to the original?

devblogs.microsoft.com/oldnewthing/20160512-00

Raymond Chen

A customer was experimenting with tokens and discovered that things fall apart when they

have a thread impersonate itself. Shouldn’t that have no effect? Here’s what they discovered.

Error checking and cleanup have been elided for expository purposes.

// This call succeeds
CComPtr<IUnknown> something;
CoCreateInstance(CLSID_Something, nullptr,
 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&something));

// Get the current token for the thread.
// This call also succeeds. (Note that OpenThreadToken
// fails if the thread is not impersonating.)
HANDLE token;
OpenThreadToken(GetCurrentThread(), TOKEN_ALL_ACCESS, TRUE, &token);

// Duplicate the token. This call succeeds.
HANDLE dupToken;
DuplicateToken(token, SecurityImpersonation, &dupToken);

// Impersonate the duplicate. This call succeeds.
ImpersonateLoggedOnUser(dupToken);

// But now, CoCreateInstance fails with E_ACCESSDENIED!
CComPtr<IUnknown> something2;
CoCreateInstance(CLSID_Something, nullptr,
 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&something2));

The Duplicate Token function says that the new token duplicates the original, but it does not

appear to be a true duplicate because when we swap out the original thread token for the

duplicate, things stop working. What’s going on?

There are a lot of things in a token. But there’s something important that’s not in the token.

https://devblogs.microsoft.com/oldnewthing/20160512-00/?p=93447
http://blogs.msdn.com/b/junfeng/archive/2004/03/16/90279.aspx
https://msdn.microsoft.com/library/windows/desktop/aa446616(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/aa374909(v=vs.85).aspx

2/3

One of my colleagues from the kernel team explains: When you duplicate a token with the

Duplicate Token function, it creates a new kernel object, namely the token, and the new

token is a duplicate of the original. But the new token has its own properties, and the

important one here is the security descriptor.

When a new kernel object is created, and you don’t provide an explicit security descriptor for

the new object, then the object is given a default security descriptor. And that default security

descriptor comes from the default DACL of the token that is in effect at the point of the call.

When you apply this rule to tokens, you find that, even though the behavior is consistent with

other kernel objects, it also means that it is very easy to create a token that doesn’t have

access to itself. When you impersonate with that token, bad things happen.

It’s like going to the FedEx Office store and giving them a DHL envelope with the

instructions, “Please make a copy of this letter.” They take the letter out of the envelope,

make a copy, and then take the copy and give it to you in a FedEx Office envelope. They

copied the letter, like you instructed, but it’s in a different envelope.

If you also want to duplicate the security descriptor, you can get the original token’s security

descriptor with Get Kernel Object Security or Get Security Info , and then pass that

security descriptor to Duplicate Token Ex .

The customer confirmed that the recommendation worked.

3/3

// This call succeeds
CComPtr<IUnknown> something;
CoCreateInstance(CLSID_Something, nullptr,
 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&something));

// Get the current token for the thread.
// This call also succeeds. (Note that OpenThreadToken
// fails if the thread is not impersonating.)
HANDLE token;
OpenThreadToken(GetCurrentThread(), TOKEN_ALL_ACCESS, TRUE, &token);

//Get the security descriptor for the token.
// This call succeeds.
PACL dacl;
PSECURITY_DESCRIPTOR sd;
GetSecurityInfo(token, SE_KERNEL_OBJECT, DACL_SECURITY_INFORMATION,
 nullptr, &dacl, &sd);

// Duplicate the token with that security descriptor.
// This call succeeds.
SECURITY_ATTRIBUTES sa = { sizeof(sa), sd, TRUE };
HANDLE dupToken;
DuplicateTokenEx(token, MAXIMUM_ALLOWED, &sa, SecurityImpersonation,
 TokenImpersonation, &dupToken);

// Impersonate the duplicate. This call succeeds.
ImpersonateLoggedOnUser(dupToken);

// CoCreateInstance now succeeds.
CComPtr<IUnknown> something2;
CoCreateInstance(CLSID_Something, nullptr,
 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&something2));

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

