
1/4

May 26, 2016

Debugging session: Which of the many things happening
in this single line of code is the one that crashed?

devblogs.microsoft.com/oldnewthing/20160526-00

Raymond Chen

A crash report came in, and the offending line of code was the following:

void CDeloreanSettings::UpdateFluxModulation(bool sendNotification) 
{ 
   ComPtr<IFluxModulator> spModulator; 
   // Crash on the next line 
   if (SUCCEEDED(m_spFluxCapacitor->GetFluxModulator(&spModulator))) 
   { 
       ... 
   } 
} 

Someone made the initial diagnosis that

The call is to Release And Get Address Of()  on a ComPtr  object which is declared right
above (which should be initialized to nullptr ). Am I missing something?

Let’s look at the disassembly. First, with no annotations. See if you can figure it out yourself.

https://devblogs.microsoft.com/oldnewthing/20160526-00/?p=93525


2/4

CDeloreanSettings::UpdateFluxModulation: 
mov     qword ptr [rsp+10h],rbx 
mov     qword ptr [rsp+18h],rsi 
mov     qword ptr [rsp+20h],rdi 
push    rbp 
push    r14 
push    r15 
mov     rbp,rsp 
sub     rsp,50h 
mov     rax,qword ptr [__security_cookie] 
xor     rax,rsp 
mov     qword ptr [rbp-8],rax 
mov     rdi,qword ptr [rcx+18h] 
mov     r14,rcx 
lea     rcx,[rbp-10h] 
xor     esi,esi 
mov     r15b,dl 
and     qword ptr [rbp-10h],rsi 
call    Microsoft::WRL::ComPtr<IUnrelatedInterface>::InternalRelease 
mov     rax,qword ptr [rdi] << crash here 
mov     rbx,qword ptr [rax+38h] 
mov     rcx,rbx 
call    qword ptr [__guard_check_icall_fptr] 
lea     rdx,[rbp-10h] 
mov     rcx,rdi 
call    rbx 

Okay, here’s the version with my annotations:



3/4

CDeloreanSettings::UpdateFluxModulation: 
; Prologue: Save nonvolatile registers and build the stack frame. 
mov     qword ptr [rsp+10h],rbx 
mov     qword ptr [rsp+18h],rsi 
mov     qword ptr [rsp+20h],rdi 
push    rbp 
push    r14 
push    r15 
mov     rbp,rsp 
sub     rsp,50h 
mov     rax,qword ptr [__security_cookie] 
xor     rax,rsp 
mov     qword ptr [rbp-8],rax 

mov     rdi,qword ptr [rcx+18h] ; rdi = m_spFluxCapacitor 
mov     r14,rcx                 ; save "this" 
lea     rcx,[rbp-10h]           ; prepare spModulator.ReleaseAndGetAddressOf 
xor     esi,esi 
mov     r15b,dl                 ; save "sendNotification" 
and     qword ptr [rbp-10h],rsi ; construct spModulator 
; ReleaseAndGetAddressOf was inlined. Here's the Release part: 
call    Microsoft::WRL::ComPtr<IUnrelatedInterface>::InternalRelease 

; prepare m_spFluxCapacitor->... 
; Crash here loading vtable from m_spFluxCapacitor 
mov     rax,qword ptr [rdi] << crash here 
mov     rbx,qword ptr [rax+38h] ; load address of GetFluxModulator 
mov     rcx,rbx                 ; parameter to CFG check 
call    qword ptr [__guard_check_icall_fptr] ; check the function pointer 

; Here's the GetAddressOf part of ReleaseAndGetAddressOf: 
lea     rdx,[rbp-10h] ; spModulator.GetAddressOf 
mov     rcx,rdi                 ; "this" for GetFluxModulator 
call    rbx                     ; _spFluxCapacitor->GetFluxModulator() 

The compiler inlined Release And Get Address Of , and it interleaved various unrelated

operations. In the second block of code, you can see it interleave the construction of the

Com Ptr  with the call to Internal Release . In the third block, you can see it peform the

control flow guard test before performing the Get Addresss Of .

The conclusion, therefore, is not that the crash occurred in the Release And Get Address Of

The Release And Get Address Of  just finished releasing and is waiting for its turn to do the

Get Addresss Of . Rather, the crash occurred because m_spFlux Capacitor  is null, and we

crashes trying to read the vtable from a null pointer.

Further investigation of the issue revealed that Update Flux Modulation  is called from an

event handler that was registered to be called whenever the modulation changed. Inspection

of memory showed that the event registration token was zero, indicating that the event has

already been unregistered. The issue is that there was a modulation change in flight when the

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx


4/4

event handler was unregistered, so the CDelorean Settings  received its change notification

after it had unregistered. The fix is to have the handler check whether it still has a

m_spFlux Capacitor , and if not, then ignore the notification, on the assumption that it was

a stray notification that was late to arrive.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

