
1/2

June 17, 2016

How can I update my WinForms app to behave better at
high DPI, or at normal DPI on very large screens?

devblogs.microsoft.com/oldnewthing/20160617-00

Raymond Chen

A customer had a WinForms app that was showing its age. It didn’t scale itself properly on

high-DPI screens, which means that if you ran it on a Surface Pro 4, you got a teeny-tiny

window and then you had to go grab your magnifying glass in order to read it. The customer

noted, “When the program is run on a large display, it occupies only a tiny portion of the

screen. What is the least amount of work I need to do to get this program to look less awful

on large screen? I am willing to accept blurriness in exchange for doing less work.”

The lowest level of DPI awareness is “none”, which is what you get if you do not manifest

your application, you have a manifest but do not declare whether you are DPI aware, or if you

have a manifest and you declare your DPI awareness as <dpiAware>False</dpiAware> .

(The value is not case-sensitive.) For an application that is not DPI-aware, the operating

system emulates a display that is 96 DPI: If the program asks for the monitor’s DPI, it will be

told that the monitor is 96 DPI. If the program asks for the resolution of the screen, the

operating system adjusts the number so that the program sees a monitor that is filled with 96

DPI pixels. What actually happens is that the program’s output is scaled so that each pixel is

one 96th of an inch square. And the result is a little blurry because that’s the nature of scaling

up.

The next level of DPI awareness is “system DPI awareness”, which is what you get if you

manifest your application as <dpiAware>True</dpiAware> . For these applications, the

operating reports the actual DPI of the highest-DPI monitor as the DPI of all monitors. If the

application displays a window on the highest-DPI monitor, it is shown at actual size. If the

application displays a window on any other monitor, it is scaled down as necessary so that

each pixel is one Xth of an inch square, where X is the DPI of the highest-DPI monitor. (Since

the highest DPI was reported to the app, the application’s out will either be unscaled or

scaled down. Scaling down results in less blurry results than scaling up, which is why the

operating system reports the highest DPI of any monitor.)

The third level of DPI awareness is “per-monitor DPI awareness”, which you opt into by

setting <dpiAware>True/PM</dpiAware> . This strange not-really-a-Boolean value is a trick

that takes advantage of the fact that versions of Windows prior to Windows 8.1 checked only

https://devblogs.microsoft.com/oldnewthing/20160617-00/?p=93695
https://blogs.msdn.microsoft.com/chuckw/2013/09/10/manifest-madness/

2/2

that the value of dpiAware began with the letters t-r-u-e and ignored any trailing junk. As a

result, a value of True/PM is interpreted as True on older systems, which means that an

application that uses this manifest declaration gets per-monitor DPI on Windows 8.1 and

higher, or system DPI on Windows 8 and lower.

Given the customer’s willingness to accept blurriness in exchange for doing less work, the

thing to do is to mark the program as DPI-unaware by setting

<dpiAware>False</dpiAware> in the manifest, or leaving it out entirely.

The customer reported that they didn’t have any such declaration in their application’s

manifest, but they were being treated as system DPI aware. Some investigation revealed that

the very first line in its Main function is a call to the Set Process Dpi Awareness function.

That call is equivalent to setting the DPI awareness in a manifest, but you have to call it

before you do anything that is dependent upon DPI.

Okay, so problem solved, right? Remove the call to Set Process Dpi Awareness from the

Main function, and now the program will be treated as DPI-unaware, and it will render at

96 DPI and be scaled up (blurrily) on higher-DPI monitors.

But of course that’s not the entire problem. The customer explained that this got rid of the

teeny-tiny text, but that wasn’t the entire problem they had. “When users run the program on

a machine with a very large screen, the window is properly scaled, but it is not taking

advantage of the fact that the screen is a large 24-inch monitor. The program uses only about

a third of the screen.”

Okay, so the deal here is not that the program is rendering text that is too small to be read.

The text is a perfectly readable size. The issue is that the developer wants the program to

resize itself to something that covers more of the screen. That’s not a DPI issue; that’s just a

program changing its default window size based on the screen dimensions. When your

program starts up, check the dimensions of the monitor it is displayed on, do your

calculations, and resize yourself if your calculations say that you want to be bigger.

Bonus reading:

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

